

TSN for critical systems: feedback from the multi-industry EDEN project

Quentin Bailleul (IRT Saint Exupéry)

EDEN : Evaluation of a Deterministic Ethernet Network

- Get full confidence and enable deployment of Ethernet Time Sensitive Network (TSN) as embedded network for multi-domain architectures (aeronautic, automotive and spatial)
- 3 Years (2020 2023)

р а

g e

Introduction Presentation organization

Use Case specification

TSN configuration

Formal analysis

Experimental deployment

french INSTITUTES OF TECHNOLOGY

p a g e

5

Aircraft cockpit

Goal : Define an alternative to AFDX with a lower footprint and lower cost. More efficient with the same quality of service.

Characteristics

- 1Gb/s network for cockpit audio digitalization
- Multiple paths for redundancy
- AVTP, Control, Data, Video

Automotive

73

Flows

Goal : New communication needs required by autonomous vehicle. Enable off-the-shelf systems in standard Ethernet with certifiable network.

Characteristics

- 100Mb/s / 1Gb/s network for new zonal architectures
- Variable wired redundancy
- Best-effort, CAN over Ethernet, A/V and Some/IP

25

End Stations

Switches

Automotive

р а

Automotive

Traffic Classes	Number of flows	Burst size	Period (ms)	Payload size (Bytes)	Latency constraint (ms)	Jitter constraint (ms)
CC_LT	18	1	[4; 10]	[8; 123]	1	N/A
Env	11	[11; 29]	33,333	1500	[10; 33,33]	N/A
AV	4	[10; 22]	[1,25; 33,333]	[256; 1500]	[1,25; 33,333]	N/A
CC_MHL	36	1	[20; 1000]	[8; 105]	[2; 50]	N/A
BE	4	[1; 2860]	356	[32; 1500]	N/A	N/A

Satellite

Goal : Unified network for platform and payloads with increased performances. COTS as IP in space FPGAs (Switch and Endpoint) at low footprint, cost.

Characteristics

- 1Gb/s symetrical network
- Cold end-station redundancy
- Best-effort to Hard real-time
 - Low latency
 - Jitter control (<1µs)

french INSTITUTES OF TECHNOLOGY

Satellite

р а

g e

Satellite

р а

> g e

4

Traffic Classes	Number of flows	Burst size	Period (ms)	Payload size (Bytes)	Latency constraint (ms)	Jitter constraint (ms)
C&C ultra low jitter	11	1	125	[32; 54]	N/A	0,001
C&C low jitter	3	1	125	[36; 508]	125	[0,5; 1]
Async urgent	1	1	1000	86	1	0,1
C&C Time window	24	1	[125; 1000]	[32; 1116]	[31,25; 1000]	N/A
Acquisition	23	1	[125; 1000]	[32; 1420]	[125; 10000]	N/A
Acquisition list	23	1	[125; 1000]	[32; 70]	[125; 1000]	N/A
VBN	1	777	33,33	1490	33,33	N/A
MEO	11	1	[125; 1000]	[2; 480]	[125; 1000]	[10; 1000]
PL high perf	1	4303	100	1490	1000	1
Instrument	3	[4; 717]	[1; 125]	[1024; 1490]	N/A	N/A

FRENCH INSTITUTES OF TECHNOLOGY

p a g e

1 5

TSN configuration

TSN configuration Step 1

Make an initial mapping of a traffic class to a priority level according to their temporal constraints :

- Aircraft cockpit : 5 classes to map on 8 priority levels
- Automotive : 5 classes to map on 8 priority levels
- Satellite : 10 classes to map on 8 priority levels
 - The most constrained classes have a priority level of their own.
 - The least constrained classes are grouped together

TSN configuration / Formal analysis

Step 2 – TSN ?

Perform an initial formal analysis with vanilla Ethernet (BCTT, WCTT, backlog)

- · Aircraft cockpit : all flows respect their temporal constraints
- Automotive : 8 flows fail to meet their latency constraints
 - Change one link to 1Gb/s : + 3 flows → OK
 - Reroute other flows : + 5 flows \rightarrow OK
- Satellite : 12 flows fail to meet their jitter constraints
 - TAS on 2 ports to meet all the jitter constraints (>1 μ s) : + 12 flows \rightarrow OK

- ➔ Two of the use cases do not require TSN shaper
- → Only the satellite need TSN shapers (on two ports)
- → We also carried out evaluations with TSN shapers, even though this wasn't really necessary.

french INSTITUTES OF TECHNOLOGY

р а

> g e

TSN configuration

Step 3 - Synchronization

TSN isn't just about traffic shaping ... Let's talk synchronization with gPTP :

- Aircraft cockpit :
 - Need robust synchronization for synchronous audio playback(AVTP)
- Automotive :
 - Need robust synchronization for timestamping measurements
- Satellite :
 - Need robust synchronization for TAS and timestamping of measurements

TSN configuration Step 3 - Synchronization

2 of the 4 gPTP domains for robust (multiple independent spanning trees) and precise (worst-case) synchronization on the aircraft use case.

➔ Jean-Luc Scharbarg : "On precision and robustness of IEEE802.1AS synchronization in TSN networks" in the 6th Workshop on Advanced Technologies in Industrial Vehicular Systems

6/09/2024

TSN configuration Step 4 - FRER

TSN is not just about traffic shaping ... Let's talk reliability with FRER :

- Aircraft cockpit :
 - Three classes of traffic (Control_*, Audio) need FRER to withstand the failure of a single link or node.
 - Add 21 replicated paths → Constraints are still respected
- Automotive :
 - Only one traffic class (ENV) needs FRER to withstand a single link or node failure
 - Add 16 replicated paths → 2 latency constraints not met
 - Reroute 9 replicated paths : + 2 flows → OK
- Satellite :
 - · All flows are replicated
 - · Nothing to change due to symmetrical topology

16/09/2024

p a g e

2 2

TSN configuration

Toolchain presentation

A TSN network has a large number of configurable parameters (Forwarding table, TAS Schedule, CBS slope, Synchronization, Stream identification, Replication, Elimination, etc.)

 \rightarrow We need tools to support TSN's industrial use.

Toolchain presentation

ર્જી

Design Network

Define networks, traffic and TSN mechanism configuration

Store YANG models

Standards-compliant network definition data model

Play usecase scenario

Configure remote network hardware and run a traffic use case scenario

· Daal · Han · ·

Toolchain presentation

- 2 generic test benches
 - 18 Multivendor switches
 - ~ 40 end stations
 - 100/1000Base-T + 10Base-T1S
 - GPS grandmaster clock
 - Simulated / real network traffic
 - Instruments :
 - PPS analyzer
 - Network TAPs + traffic capture on ES

Deployment feedback

Feedback on the use of the shaper on the hardware :

- CBS :
 - Works as expected
 - Can be easily used on a specific port (e,g. only on end stations or on a few switch ports)
- TAS :
 - It is possible to create highly optimized TAS schedules, but they often don't work.
 - Need to take into account the guardband, synchronization precision, application jitter, ...
 - In the end, we simply oversize the windows by a factor of x
 - Schedule changes every time we add a new TAS flow. (not really ideal for a certification process)
- ATS :
 - We have not found any hardware implementation (2020/2021)

Deployment feedback

Feedback on the use of the shaper on the hardware :

- A lot of unwanted traffic (MDNS, ...) due to linux
- Misconfigured traffic generators on CBS flows
- Some time trigger emission imprecision (Non RT OS, ...)

- → cause temporal constraint violation
- → cause temporal constraint violation
- → cause temporal constraint violation

→ We need Per Stream Filtering and Policing (IEEE 802.1Qci)

Deployment feedback

Feedback on the use of synchronization on hardware :

- Few interoperability problems due to differences in timestamping points and clock quality :
 - Can be solved by allowing parameters such as *meanLinkDelayThresh* to be configured in the implementation.
- Static configuration and hot standby mechanism are very interesting for the critical embedded sector
 - Deterministic and faster reconfiguration time than BMCA
 - But only pre-standard test implementation
 - Deployment with BMCA

Deployment feedback

Feedback on the use of FRER on hardware:

- Seems to be a straightforward standard, but in reality offers a wide range of implementation options, leading to interoperability problems.
- Easy to misconfigure (Match vs Vector recovery, Individual recovery, ...)
- Limitation when using passive stream identification function and multicast flow with static forwarding table
 - Can be bypassed by constraints on replicated paths (if there are enough paths available)

Deployment feedback

Feedback on configuration deployment and monitoring on hardware :

- SNMP is not really suited to configuration
- NETCONF/RESTCONF can configure and monitor but not implemented in the switches we use
 - · Not really adapted for critical embedded networks
- A lighweight, YANG-based and standard configuration and monitoring protocol adapted to the need of critical embedded sector is required for industrial use of TSN.

Key takeaways :

- TSN mechanisms can help meet the needs of the critical embedded world
- Perhaps the attention given to the TSN shapers is a bit excessive (at least in our use cases).
- FRER and PSFP are the mechanisms that slow down the deployment of TSN in the critical embedded world.
- A lighweight, YANG-based configuration and monitoring protocol is needed for the critical embedded world.

p a g e

Thank you for your attention!

Questions?

p a g e

3 3

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

References

Use cases :

 BARBERO, Massimo, LEYDIER, Thierry, CUENOT, Philippe et al. How to design a sage Ethernet TSN network on spacecraft application. In : DASIA 2023. 2023.

Synchronisation :

- BAILLEUL, Quentin, CUENOT, Philippe, JAFFRÈS-RUNSER, Katia, et al. Worst-case synchronization precision of IEEE802. 1AS. In: 2023 IEEE 28th International Conference on Emerging Technologies and Factory Automation (ETFA). IEEE, 2023. p. 1-8.
- BAILLEUL, Quentin, JAFFRÈS-RUNSER, Katia, SCHARBARG, Jean-Luc, et al. Assessing a precise gPTP simulator with IEEE802. 1AS hardware measurements. In: 11th European Congress on Embedded Real-Time Systems (ERTS 2022). 2022.
- BAILLEUL, Quentin. Dimensioning TSN network synchronization in different embedded contexts. 2023. Thèse de doctorat. Institut National Polytechnique de Toulouse-INPT.

Tool interoperability with YANG :

- CUENOT, Philippe, LEYDIER, Thierry, FRUCHARD, Damien et al. Yet another experience on TSN tools interoperability for critical embedded networks. In : ERTS 2024. 2024.
- https://sahara.irt-saintexupery.com/embedded-systems/eden-yang

р а g