

Challenges of Deadline-Aware Configurations for Hybrid TSN Networks

by **Luxi Zhao**

Email: zhaoluxi@buaa.edu.cn Beihang University

Real-time performance of TSN networks

A key issue of focus

Short-Range Ra

Correctness in real-time communications

ong-Range Radar

Ultra So

- Task functional logic
- Latency within defined upper bounds

Real-time performance of TSN networks

Does TSN Automatically Guarantee Real-Time Transmission? NO

- Flow control related sub-protocols
	- Provides a basic paradigm for network design
- **Require algorithms and tools for achieving real-time communications**

Real-time performance of TSN networks

Real-time Guarantees for TIME-Triggered (TT) Communication

- Configuration goals: offsets, time slots, queue usage, etc.
- Configuration characteristic:
	- Real-Time Guarantees: at scheduling phase
	- Scope: periodic traffic flows
- Algorithm Complexity: high
- Global Clock Synchronization: yes

Luxi Zhao, Sep. 2024

Real-time performance of TSN networks

Real-Time Guarantees for EVENT-Triggered (ET) Communication

- Configuration characteristic:
	- Real-Time Guarantees: dedicated performance analysis
	- Scope: periodic/sporadic traffic flows Global Clock Synchronization: no

- Algorithm Complexity: low
-

Challenges of deadline-aware configuration in TSN

- Performance analysis methods:
	- event-triggered sub-protocols, hybrid TT and ET communication
	- network calculus, response timing analysis,

Beyond Just Analyzing the Real-Time Performance of a Fully Configured System

Design and configure a system to meet performance requirements

Traditional Configuration Framework -- Post-Schedulability Verification

Challenges of deadline-aware configuration in TSN

Traditional Configuration Framework -- Post-Schedulability Verification

- Verification stage:
	- Takes only a few seconds per configuration
- **Configuration stage:**
	- Repeated real-time verification with each configuration change
	- Consumes over 90% overall configuration time

Challenges of deadline-aware configuration in TSN

What Comes Next? → Online Reconfiguration Scenario [1]

- Develop more efficient performance analysis framework to support network configuration
- **Reduce verification overhead**

[1] Boyer, M., and Henia, R. (2024). Industrial challenge: Embedded reconfiguration of TSN. *technical report*.

Insights from Two Perspectives

(1) Incremental Performance Analysis [2]

- Principal idea
	- Analyze only the changed portions of the network
	- Avoid full re-analysis of entire network traffic every time

Network Calculus Theory Incremental Analysis Rules

Core Methods (TSN/TAS+CBS)

- Classify network node ports: directly affected, indirectly affected, unaffected
- Establish incremental rules to maximize reuse of existing analysis components
	- TT arrival curve
	- TAS service curve
	- AVB arrival curve
	- CBS service curve
	- CBS shaping curve
	- Delay bounds

Network Calculus Performance Model for TSN/TAS+CBS

10 [2] Zhao, L., Zhang, X., He, F., et al. (2024). Incremental Performance Analysis for Accelerating Verification of TSN Network Reconfigurations. *IEEE Transactions on Network and Service Management*.

Incremental Performance Analysis [2]

Comparison with Traditional Performance Analysis

- Speed Improvement
	- 75% to 95% faster (simultaneous changing flows within 10%)
	- More effective with large-scale networks
- Limitations
	- Analysis time increases with more changing flows
	- More concurrent changing flows bring it closer to traditional performance analysis

 $a24$ tt2,4,6;
| a16,24;
| b13 $\overline{\text{sw2}}$ ASCAI $SW5$ A SICAI tt1,2,3;
a11,12;
b13,22 **TTASCAI TTASICAD** tt 1, 2, 4, 6;
a 1 1 1 2 1 6 $\overline{\text{SW1}}$ $tt1;$ **ASCA** $\frac{a11}{b14,22}$ b_{13.14.2} **TTASICAD B** TTASIC tt3,5;
a15 ES. TT I STCTAID
TT I STCTAID **B TTA SICIAID** V tt4,5,6;
a15,16;
b14 tt8;
a17; SW₃ $b19$ SW₆ $\Gamma\Gamma$ aisiciaid tt7,8;
a17,18;
b19 $\rm{TT_A}{\mid}S{\mid}C{\mid}A{\mid}I$

 $\Gamma\Gamma$ a \mid s \mid c \mid A

TaßCA

11 [2] Zhao, L., Zhang, X., He, F., et al. (2024). Incremental Performance Analysis for Accelerating Verification of TSN Network Reconfigurations. *IEEE Transactions on Network and Service Management*.

ES13

 $a24$

tt6.10 $b13.2$

a12;
b19

tt8;
b14,22

tt5;
.a15,18

tt3,7

ES8

TTASICIAID

 TT_A S C A

ASCAT

"T.ISICIAIT

 TT_A S C A D

 $\rm{TT}_{\rm{A}}\rm{S}\rm{C}\rm{A}$

 $\rm TTA|S|C|A$

 $\rm Ta|S|C|A|$

ASCAD

tt9,10;
a20,21;
b23

TTASICIAII TTASCAD

'a SICIAI

Advantages

- Significant improvement when networks have small changes
- **Uust constructs incremental analysis rules on top of the traditional analysis model**
- **Easily extends to other TSN flow control sub-protocols**

Disadvantages

- Complexity can approach traditional analysis when there are large network changes
- **Still relies on the real-time verification feedback loop**

Insights from Two Perspectives

(2) Performance-Driven Configuration Optimization [3] [4]

- Principal idea
	- Can we automatically ensure real-time performance while configuration optimization, like TT scheduling?
	- Avoid the traditional real-time verification feedback loop

(a) Conventional framework based on ex-post verification

Performance-Driven Configuration Optimization [3] [4]

- Problem Motivation
	- CBS, DRR, TAS+CBS: optimize bandwidth to optimize residual bandwidth utilization while guarantees deadlines
	- Over-allocation
		- Leads to resource waste
		- Decreases service quality for lower-priority
- Overall framework
	- Network level
	- Node level

Risks missing deadlines for time-critical applications

(b) New framework based on prior QoS guarantees

[3] Zhao, L., Yan, Y., & Zhou, X. (2023). Minimum Bandwidth Reservation for CBS in TSN With Real-Time QoS Guarantees. *IEEE Transactions on Industrial Informatics*. [4] Xie, A., He, F., & Zhao, L. (2024) Optimizing Quantum Assignment for DRR in TSN: A Network Calculus-Based Method. *IEEE Real-Time Systems Symposium (RTSS).*

14

Performance-Driven Configuration Optimization [3] [4]

Network Level -- Deadline Decomposition Technique

- Problem
	- Upstream bandwidth changes impact downstream delays
	- Need to decouple traffic between nodes
- Solution
	- Decompose end-to-end deadlines into local deadlines at each node
	- Ensures end-to-end deadlines are met when all local deadlines are satisfied

Node Level – Optimize Configuration Parameters

- Coupled models
	- Integrate NC-based performance analysis model with bandwidth optimization problem
- **Challenge**
	- Derive closed-form or fast optimal solutions

Objective function: maximize residual bandwidth **Decision variables:** idle slope $idsl_i^h$ **Constraints:** deadline guarantees – NC-based CBS performance analysis model

$$
\mathbb{P}: \max_{idSl_1^h,\dots, idSl_{N_{\text{CBS}}^h} > 0} \mu^h(idSl_1^h,\dots, idSl_{N_{\text{CBS}}^h}^h) = C - \sum_{i=1}^{N_{\text{CBS}}} idSl_i^h
$$

s.t.
$$
\mathbb{C}_1: D_i^h \ge hDev(\alpha_i^h, \beta_{i,\text{CBS}}^h), \quad \forall i \in [1, N_{\text{CBS}}]
$$

$$
\mathbb{C}_2: idSl_i^h \ge \sum_{f \in \mathcal{F}_i^h} \rho_f, \qquad \forall i \in [1, N_{\text{CBS}}]
$$

Scheduling Policy: Credit-Based Shaping (CBS) [3] **Scheduling Policy:** Deficit Round Robin (DRR) [4]

Objective function: maximize residual bandwidth **Decision variables:** quantum q_i^h , Q^h **Constraints:** deadline guarantees – NC-based DRR performance analysis model

$$
\mathbb{P}: \max_{Q^h, q_1^h, \dots, q_{N_{\text{CDRR}}}^h > 0} \mu^h(Q^h, q_1^h, \dots, q_{N_{\text{CDRR}}}^h) = 1 - \sum_{i=1}^{N_{\text{CDRR}}} \frac{q_i^h}{Q^h} = 1 - \sum_{i=1}^{\text{CDRR}} \eta_i^h
$$
\ns.t.
$$
\mathbb{C}_1: D_i^h \ge hDev(\alpha_i^h, \beta_{i, \text{DRR}}^h), \quad \forall i \in [1, N_{\text{CDRR}}]
$$
\n
$$
\mathbb{C}_2: q_i^h \ge l_i^{h, \text{max}}, \qquad \forall i \in [1, N_{\text{CDRR}}]
$$

Node Level – Optimize Configuration Parameters

Closed-form solution

CBS Scheduler: [3]

- Established equation linking idle slope idSl^h_t to worstcase delay;
- By gradient information, derived closed-form expression for minimal bandwidth reservation \emph{idSl}^h_i required to meet local deadlines;
- **TAS+CBS hybrid architecture** [under review]

DRR Scheduler: [4]

- Established equation linking quantum q_l^h , Q^h to worstcase delay;
- Derived closed-form solution for local optimal bandwidth with fixed Q^h ;
- Used gradient ascent to find optimal total quantum Q^h for maximizing residual bandwidth;
- Formally proved gradient ascent avoids local optima

Comparison with Default idSl (75%) -- CBS

- Bandwidth Savings
	- Saves an average of 91.1% and up to 99.0% compared to default idSl (e.g., 75%)
- Correctness Validation
	- NC-based analysis confirms that all flows meet deadline requirements configured with optimized bandwidth
- Runtime Efficiency
	- Configuring optimal bandwidth reservations for all traffic classes across all ports takes just seconds

TABLE II VALIDITY OF OUR PROPOSED APPROACH IDSL MIN/NC

TARI F III

CORRECTNESS OF OUR PROPOSED APPROACH IDSI MIN/NC

Comparison with Traditional Optimization -- DRR

- Bandwidth Efficiency
	- Saves over 85% residual bandwidth.
	- Traditional schedulability feedback-based method: Saves around 60% residual bandwidth.
- Runtime Improvement
	- At least 2-3 orders of magnitude faster

Improvements in both Objective Performance and Optimization Speed !

Advantages

- Ensures QoS during optimization
- **Removes real-time verification feedback-loop**

Disadvantages

- Requires specific coupling models for different schedulers and optimization objectives
- **If all inter-** Identifying suitable optimization methods can be challenging

References

- [1] M. Boyer, and R. Henia, "Industrial challenge: Embedded reconfiguration of TSN." technical report, 2024.
- **[2] L. Zhao, X. Zhang, F. He, et al., "Incremental Performance Analysis for Accelerating** Verification of TSN Network Reconfigurations." *IEEE Transactions on Network and Service Management*, early access, 2024.
- [3] L. Zhao, Y. Yan, and X. Zhou, "Minimum Bandwidth Reservation for CBS in TSN With Real-Time QoS Guarantees." *IEEE Transactions on Industrial Informatics*, 20(4), 2023.
- **[4] A. Xie, F. He, and L. Zhao, "Optimizing Quantum Assignment for DRR in TSN: A Network** Calculus-Based Method." *IEEE Real-Time Systems Symposium (RTSS)*, accepted, 2024.

Happy to answer questions \odot zhaoluxi@buaa.edu.cn