

Challenges of Deadline-Aware Configurations for Hybrid TSN Networks

by Luxi Zhao

Email: zhaoluxi@buaa.edu.cn Beihang University

Real-time performance of TSN networks

Functional logic correctness

• A key issue of focus

Short-Range Ra

Sensor Perception

Correctness in real-time communications

ong-Range Radar

Ultra So

- Task functional logic
- Latency within defined upper bounds

Real-time performance of TSN networks

Does TSN Automatically Guarantee Real-Time Transmission? NO

- Flow control related sub-protocols
 - Provides a basic paradigm for network design
- Require algorithms and tools for achieving real-time communications

3

Real-time performance of TSN networks

Real-time Guarantees for TIME-Triggered (TT) Communication

- Configuration goals: offsets, time slots, queue usage, etc.
- Configuration characteristic:
 - Real-Time Guarantees: at scheduling phase
 - Scope: periodic traffic flows

- Algorithm Complexity: high
- Global Clock Synchronization: yes

 $\left[ES_{1}, SW_{1} \right] + 2T_{1}$

Luxi Zhao, Sep. 2024

Real-Time Guarantees for EVENT-Triggered (ET) Communication

- Configuration characteristic:
 - Real-Time Guarantees: dedicated performance analysis

Real-time performance of TSN networks

Scope: periodic/sporadic traffic flows

- Algorithm Complexity: low
- Global Clock Synchronization: no

Challenges of deadline-aware configuration in TSN

- Performance analysis methods:
 - event-triggered sub-protocols, hybrid TT and ET communication
 - network calculus, response timing analysis,

Beyond Just Analyzing the Real-Time Performance of a Fully Configured System

Design and configure a system to meet performance requirements

Traditional Configuration Framework -- Post-Schedulability Verification

Challenges of deadline-aware configuration in TSN

Traditional Configuration Framework -- Post-Schedulability Verification

- Verification stage:
 - Takes only a few seconds per configuration
- Configuration stage:
 - Repeated real-time verification with each configuration change
 - Consumes over 90% overall configuration time

Challenges of deadline-aware configuration in TSN

What Comes Next? → Online Reconfiguration Scenario [1]

- Develop more efficient performance analysis framework to support network configuration
- Reduce verification overhead

[1] Boyer, M., and Henia, R. (2024). Industrial challenge: Embedded reconfiguration of TSN. *technical report*.

Insights from Two Perspectives

(1) Incremental Performance Analysis [2]

Principal idea

Network Calculus Theory

- Analyze only the changed portions of the network
- Avoid full re-analysis of entire network traffic every time

Incremental Analysis Rules

[2] Zhao, L., Zhang, X., He, F., et al. (2024). Incremental Performance Analysis for Accelerating Verification of TSN Network Reconfigurations. IEEE Transactions on Network and Service Management.

Luxi Zhao, Sep. 2024

Core Methods (TSN/TAS+CBS)

- Classify network node ports: directly affected, indirectly affected, unaffected
- Establish incremental rules to maximize reuse of existing analysis components
 - TT arrival curve
 - TAS service curve
 - AVB arrival curve
 - CBS service curve
 - CBS shaping curve
 - Delay bounds

Network Calculus Performance Model for TSN/TAS+CBS

[2] Zhao, L., Zhang, X., He, F., et al. (2024). Incremental Performance Analysis for Accelerating Verification of TSN Network Reconfigurations. IEEE Transactions on Network and Service Management. Luxi Zhao, Sep. 2024

Incremental Performance Analysis [2]

Comparison with Traditional Performance Analysis

- Speed Improvement
 - 75% to 95% faster (simultaneous changing flows within 10%)
 - More effective with large-scale networks
- Limitations
 - Analysis time increases with more changing flows
 - More concurrent changing flows bring it closer to traditional performance analysis

tt6.10 b13.2 TTASCA a24 tt2,4,6; a16,24; b13 SW2 A S C A I a12; b19 SW5 tt1,2,3; a11,12; ATTASCA TTASCAI BTTASCAT tt1,2,4,6; TTASCAD b13,22 SW1 tt1; tt1 ASCA a11,12; b14,22 b13.14.2 TASCA TTASCAD A S C A I B TTAS C tt8; b14,22 tt3,5; a15 TTASICIAI ES2 TA S C AD Ta S C AD BTTASCA tt4,5,6; a15,16; b14 tt8; a17; SW3 tt5; a15,18 b19 SW6 ITA S C A D tt7,8; a17,18; b19 TTA S C A TTA S C A TTASCA tt3,7 TASCA **ASCAD** TASCA A TTA S CAL

[2] Zhao, L., Zhang, X., He, F., et al. (2024). Incremental Performance Analysis for Accelerating Verification of TSN Network Reconfigurations. IEEE Transactions on Network and Service Management.

ES13

ES8

a24

TTASCAD

TAS CAD

ASCA

tt9,10; a20,21; b23

TASCAI

ΓT_A S C A D

Advantages

- Significant improvement when networks have small changes
- Just constructs incremental analysis rules on top of the traditional analysis model
- Easily extends to other TSN flow control sub-protocols

Disadvantages

- Complexity can approach traditional analysis when there are large network changes
- Still relies on the real-time verification feedback loop

Insights from Two Perspectives

(2) Performance-Driven Configuration Optimization [3] [4]

- Principal idea
 - Can we automatically ensure real-time performance while configuration optimization, like TT scheduling?
 - Avoid the traditional real-time verification feedback loop

(a) Conventional framework based on ex-post verification

Performance-Driven Configuration Optimization [3] [4]

- Problem Motivation
 - CBS, DRR, TAS+CBS: optimize bandwidth to optimize residual bandwidth utilization while guarantees deadlines
 - Over-allocation
 - Leads to resource waste
 - Decreases service quality for lower-priority
- Overall framework
 - Network level
 - Node level

Risks missing deadlines for time-critical applications

(b) New framework based on prior QoS guarantees

Performance-Driven Configuration Optimization [3] [4]

Network Level -- Deadline Decomposition Technique

- Problem
 - Upstream bandwidth changes impact downstream delays
 - Need to decouple traffic between nodes
- Solution
 - Decompose end-to-end deadlines into local deadlines at each node
 - Ensures end-to-end deadlines are met when all local deadlines are satisfied

Node Level – Optimize Configuration Parameters

- Coupled models
 - Integrate NC-based performance analysis model with bandwidth optimization problem
- Challenge
 - Derive closed-form or fast optimal solutions

Objective function: maximize residual bandwidth **Decision variables:** idle slope $idSl_i^h$ **Constraints:** deadline guarantees – NC-based CBS performance analysis model

$$\mathbb{P}: \max_{idSl_1^h, \dots, idSl_{N_{\text{CBS}}}^h > 0} \mu^h(idSl_1^h, \dots, idSl_{N_{\text{CBS}}}^h) = C - \sum_{i=1}^{N_{\text{CBS}}} idSl_i^h$$

s.t. $\mathbb{C}_1: D_i^h \ge hDev(\alpha_i^h, \beta_{i,\text{CBS}}^h), \quad \forall i \in [1, N_{\text{CBS}}]$
 $\mathbb{C}_2: idSl_i^h \ge \sum_{f \in \mathcal{F}_i^h} \rho_f, \qquad \forall i \in [1, N_{\text{CBS}}]$

Scheduling Policy: Credit-Based Shaping (CBS) [3]

Objective function: maximize residual bandwidth **Decision variables:** quantum q_i^h , Q^h **Constraints:** deadline guarantees – NC-based DRR performance analysis model

$$\mathbb{P}: \max_{Q^h, q_1^h, \dots, q_{N_{\text{cDRR}}}^h > 0} \mu^h(Q^h, q_1^h, \dots, q_{N_{\text{cDRR}}}^h) = 1 - \sum_{i=1}^{N_{\text{cDRR}}} \frac{q_i^h}{Q^h} = 1 - \sum_{i=1}^{\text{cDRR}} \eta_i^h$$

s.t. $\mathbb{C}_1: D_i^h \ge h Dev(\alpha_i^h, \beta_{i,\text{DRR}}^h), \quad \forall i \in [1, N_{\text{cDRR}}]$
 $\mathbb{C}_2: q_i^h \ge l_i^{h, \max}, \quad \forall i \in [1, N_{\text{cDRR}}]$

Scheduling Policy: Deficit Round Robin (DRR) [4]

Node Level – Optimize Configuration Parameters

Closed-form solution

CBS Scheduler: [3]

- Established equation linking idle slope *idSl^h_i* to worstcase delay;
- By gradient information, derived closed-form expression for minimal bandwidth reservation *idSl^h_i* required to meet local deadlines;
- TAS+CBS hybrid architecture [under review]

DRR Scheduler: [4]

- Established equation linking quantum q_i^h, Q^h to worstcase delay;
- Derived closed-form solution for local optimal bandwidth with fixed Q^h;
- Used gradient ascent to find optimal total quantum Q^h for maximizing residual bandwidth;
- Formally proved gradient ascent avoids local optima

Comparison with Default idSI (75%) -- CBS

- Bandwidth Savings
 - Saves an average of 91.1% and up to 99.0% compared to default idSI (e.g., 75%)
- Correctness Validation
 - NC-based analysis confirms that all flows meet deadline requirements configured with optimized bandwidth
- Runtime Efficiency
 - Configuring optimal bandwidth reservations for all traffic classes across all ports takes just seconds

TABLE II VALIDITY OF OUR PROPOSED APPROACH IDSLMIN/NC

SR Class	Port	idSlMin/NC	idSlMin/Std	idSl/Default
Class M ₁	[ES1,SW1]	12.77%	4%	
	[ES2,SW1]	4.94%	1.6%	
	[ES3,SW1]	2.47%	0.8%	
	[SW1,ES4]	9.84%	3.2%	
	[SW1,ES5]	9.56%	3.2%	$M_1 + M_0 - 75\%$
Class M ₂	[ES1,SW1]	7.93%	1.6%	1/11+1/12=7570
	[ES2,SW1]	0.72%	0.16%	
	[ES3,SW1]	5.11%	1.12%	
	[SW1,ES4]	8.74%	1.92%	
	[SW1,ES5]	4.42%	0.96%	
Average SR Class		13.3%	3.72%	75%

TABLE III

CORRECTNESS OF OUR PROPOSED APPROACH IDSLMIN/NC

SR Class	Flow	WCD (μs)	WCD (μs)	WCD (μs)	Deadline
		idSlMin/NC	idSlMin/Std	idSl/Default	Deudime
Class M ₁	f1	533.8	2038	129.8	1000
	f2	443.1	1740	106.1	500
	f3	499.8	1930	89.8	500
	f4	669.8	2438	97.8	1000
Class M ₂	f5	1640.1	9316.4	122.8	5000
	f6	666.4	3882.5	221.3	1000
	f7	925.3	5017.3	245.3	5000
	f8	998.4	6459.2	186.8	1000

Comparison with Traditional Optimization -- DRR

- Bandwidth Efficiency
 - Saves over 85% residual bandwidth.
 - Traditional schedulability feedback-based method: Saves around 60% residual bandwidth.
- Runtime Improvement
 - At least 2-3 orders of magnitude faster

Improvements in both Objective Performance and Optimization Speed !

Advantages

- Ensures QoS during optimization
- Removes real-time verification feedback-loop

Disadvantages

- Requires specific coupling models for different schedulers and optimization objectives
- Identifying suitable optimization methods can be challenging

References

- [1] M. Boyer, and R. Henia, "Industrial challenge: Embedded reconfiguration of TSN." technical report, 2024.
- [2] L. Zhao, X. Zhang, F. He, et al., "Incremental Performance Analysis for Accelerating Verification of TSN Network Reconfigurations." *IEEE Transactions on Network and Service Management*, early access, 2024.
- [3] L. Zhao, Y. Yan, and X. Zhou, "Minimum Bandwidth Reservation for CBS in TSN With Real-Time QoS Guarantees." *IEEE Transactions on Industrial Informatics*, 20(4), 2023.
- [4] A. Xie, F. He, and L. Zhao, "Optimizing Quantum Assignment for DRR in TSN: A Network Calculus-Based Method." *IEEE Real-Time Systems Symposium (RTSS)*, accepted, 2024.

Happy to answer questions zhaoluxi@buaa.edu.cn