

Traffic Scheduling with the TAS: Past Research and Future Directions

Thomas Stüber, Lukas Osswald

http://kn.inf.uni-tuebingen.de

- Lukas Osswald
 - M.Sc. in computer science from Universität Tübingen
 - PhD student since Nov. 2020
- Research Interests
 - Time-Sensitive Networking (TSN)
 - Signaling and admission control

Lukas Osswald

Thomas Stüber

- Time Aware Shaper (TAS)
 - IEEE 802.1Qbv
 - Scheduling
 - offline per-flow planning of transmission times
 - Scheduler
 - Algorithm which computes a GCL
 - Model, optimization method, objective function
- Scheduling algorithms for the TAS has been a hot topic for many years
 - More than 100 works were published
 - Still increasing...

Literature study:

Thomas Stüber, Lukas Osswald, Steffen Lindner, and Michael Menth. A Survey of Scheduling Algorithms for the Time-Aware Shaper in Time-Sensitive Networking (TSN). IEEE Access, 2023

- Models focusing on different problem variations
 - Joint routing and scheduling
 - Compute schedule and simultaneously optimize the path of the stream
 - Dynamic reconfiguration (online scheduling)
 - Modify an existing schedule to admit novel streams incrementally
 - Increased reliability
 - Compute schedule robust against non-determinism, e.g., time-synchronization jitter
 - Queuing
 - With, without and restricted queuing
 - GCL synthesis
 - Compute schedule + GCLs simultaneously
 - Lower priority traffic
 - Compute schedule such that QoS of AVB/BE/etc traffic is maximized
 - Joint task scheduling
 - Compute TAS schedule and schedule for tasks of an operating system simultaneously

- Various solving methodologies
 - Integer Linear Programming (ILP)
 - Satisfiability Modulo Theories (SMT)
 - Constrained Programming
 - Genetic algorithms, list scheduling, custom heuristics, ...
- Objective functions
 - Latency, jitter, and other QoS metric, ...
- Evaluation of proposed schedulers
 - Focus heavily on runtimes of solvers (aka "scalability")
 - Fewer works: solvability, schedule quality, ...

- Many works propose new slightly modified problem variations...
 - ...which are then solved by standard methods
- ► No recent breakthrough w.r.t. performance
 - Mostly x% faster than previous works...
- Most evaluations focus on runtime and scalability
 - Important!
 - But: often "unfair" comparison, e.g., algorithms with different run-time complexity
 - Schedule quality and solvability is often neglected
- ► No clear direction
 - We conclude: TAS is not the general TSN solution
 - Problems variations are specialized and diverse
 - \rightarrow TAS should be seen as specialized tool for hard problems

- Reproducibility and evaluations must be improved to advance research!
 - Publish or at least describe
 - Problem instances
 - Reference implementation
 - Evaluations
 - Apply multiple problem instances
 - Compare novel scheduling algorithms to
 - Similar models and solving methodologies
 - Evaluate run-time, solvability, quality of schedule, ...
- T. Stüber, M. Eppler, L. Osswald, M. Menth: "Performance Comparison of Offline Scheduling Algorithms for the Time-Aware Shaper (TAS)", Transactions on Industrial Informatics, 2024

- Open problems
 - Dynamic reconfiguration
 - How can we resolve scheduling conflicts?
 - Reliable schedules
 - Many schedules can only work in theory
 - In a real test bed there is a lot of additional delays and jitters which needs to be modeled
 - Integrate TAS with other
 - QoS algorithms: ATS, CBS, ...
 - Technologies: Wifi, 5G/6G, ...
- Find more specialized use-cases
 - to uncover more problem variations
 - Question to industry in the room!

Questions and Discussion