

Decentralized Resource Reservation for Real-Time Communication in TSN

Lisa Maile, September 10, 2024

General Procedure

Decentralized Admission Control

General Procedure

Decentralized Admission Control

1) Talker advertises the availability of data

General Procedure

1)

2)

Decentralized Admission Control

Talker advertises the availability of data

Bridges check for enough resources

What about Paths?

assumed to be given, e.g., by

- broadcasting (pub-sub principle)
- pre-established:
 - static / manual
 - additional central control unit [IEEE Std 802.1Qcc]
 - other protocols:
 - Rapid Spanning Tree Protocol (RSTP) [IEEE Std 802.1w]
 - Shortest Path Bridging (SPB) [IEEE Std 802.1aq]
 → extended: Intermediate System to Intermediate System (IS-IS) for Path Control and Reservation [IEEE Std 802.1Qca]

Reservation Message

General Procedure

1)

2)

3)

Decentralized Admission Control

Talker advertises the availability of data

Bridges check for enough resources

Listener respond if they are interested

What about Paths?

assumed to be given, e.g., by

- broadcasting (pub-sub principle)
- pre-established:
 - static / manual
 - additional central control unit [IEEE Std 802.1Qcc]
 - other protocols:
 - Rapid Spanning Tree Protocol (RSTP) [IEEE Std 802.1w]
 - Shortest Path Bridging (SPB) [IEEE Std 802.1aq]
 → extended: Intermediate System to Intermediate System (IS-IS) for Path Control and Reservation [IEEE Std 802.1Qca]

Confirmation Message

September 10, 2024 | Lisa Maile

General Procedure

1)

2)

3)

4)

Decentralized Admission Control

Bridges reserve resources

Talker advertises the availability of data

Bridges check for enough resources

Listener respond if they are interested

What about Paths?

assumed to be given, e.g., by

- broadcasting (pub-sub principle)
- pre-established:
 - static / manual
 - additional central control unit [IEEE Std 802.1Qcc]
 - other protocols:
 - Rapid Spanning Tree Protocol (RSTP) [IEEE Std 802.1w]
 - Shortest Path Bridging (SPB) [IEEE Std 802.1aq]
 → extended: Intermediate System to Intermediate System (IS-IS) for Path Control and Reservation [IEEE Std 802.1Qca]

Confirmation Message

Data

General Procedure

What about Paths?

assumed to be given, e.g., by

- broadcasting (pub-sub principle)
- pre-established:
 - static / manual
 - additional central control unit [IEEE Std 802.1Qcc]
 - other protocols:
 - Rapid Spanning Tree Protocol (RSTP) [IEEE Std 802.1w]
 - Shortest Path Bridging (SPB) [IEEE Std 802.1aq]
 → extended: Intermediate System to Intermediate System (IS-IS) for Path Control and Reservation [IEEE Std 802.1Qca]

Decentralized Admission Control

- 1) Talker advertises the availability of data
- 2) Bridges check for enough resources
- 3) Listener respond if they are interested
- 4) Bridges reserve resources
- 5) Start of Transmission

Technische Universität Braunschweig

How "it" works...

where "it" ≔ decentralized reservation protocols in TSN

Technische Universität Braunschweig

The Problem

Looking back: RSVP/IntServ

Flow latency does not depend on other flows – service guaranteed at all times [Zhang&Ferrari 1993, Frangioni 2017]

But now?

Service offered by TSN schedulers depends on scheduled flows \rightarrow flow burstiness changes, which changes the delay in the subsequent network

Looking back: RSVP/IntServ

Flow latency does not depend on other flows – service guaranteed at all times [Zhang&Ferrari 1993, Frangioni 2017]

But now?

Service offered by TSN schedulers depends on scheduled flows \rightarrow flow burstiness changes, which changes the delay in the subsequent network

Looking back: RSVP/IntServ

Flow latency does not depend on other flows – service guaranteed at all times [Zhang&Ferrari 1993, Frangioni 2017]

But now?

Service offered by TSN schedulers depends on scheduled flows \rightarrow flow burstiness changes, which changes the delay in the subsequent network

Latency Calculation

Looking back: RSVP/IntServ

Flow latency does not depend on other flows – service guaranteed at all times

But now?

Service offered by TSN schedulers depends on scheduled flows \rightarrow flow burstiness changes, which changes the delay in the subsequent network

Required:

Topology-Independent Per-Hop Latency Calculation

- latency/backlog bounds of flow not affected by other flows
- using only local information (no topology overview, no information of interference before hop)

Technische Universität Braunschweig

Independent Delay Bounds

Notation:

Current Worst-Case Per-Queue Latency d_q

Per-Queue Delay Bound $\overline{D_q}$

Bridge Logic (SRP)

Check bounds for: Bandwidth? Queue Size? Internal Resources?

SRP

assumption: there exists a maximum d_q

Bridge Logic (RAP) Check bounds for: Bandwidth? Queue Size? Internal Resources? Delay?

added delay bound check: $d_q \leq \overline{D_q}$

RAP

September 10, 2024 | Lisa Maile

Stream Reservation Protocol (SRP)

Worst-case *d* in the TSN standards for Credit-Based Shaper (e.g., for AccumulatedLatency in SRP):

Stream Reservation Protocol (SRP)

Worst-case *d* in the TSN standards for Credit-Based Shaper (e.g., for AccumulatedLatency in SRP):

results and analysis from [Maile 2023]

Technische Universität Braunschweig

The New Approach

- Current Worst-Case Per-Queue Latency d_q
- Per-Queue Delay Bound $\overline{D_q}$
- Allow flow only if:
- $d_q \leq \overline{D_q}, \forall q \text{ on path}$
- Latency bound of flow: Determined by $\overline{D_q}$

- Current Worst-Case Per-Queue Latency d_q
- Per-Queue Delay Bound $\overline{D_q}$
- Allow flow only if:
- $d_q \leq \overline{D_q}, \forall q \text{ on path}$
- Latency bound of flow: Determined by $\overline{D_q}$

- Current Worst-Case Per-Queue Latency d_q
- Per-Queue Delay Bound $\overline{D_q}$
- Allow flow only if:
- $d_q \leq \overline{D_q}, \forall q \text{ on path}$
- Latency bound of flow: Determined by $\overline{D_q}$

- Current Worst-Case Per-Queue Latency d_q
- Per-Queue Delay Bound $\overline{D_q}$
- Allow flow only if:
- $d_q \leq \overline{D_q}, \forall q \text{ on path}$
- Latency bound of flow: Determined by $\overline{D_q}$

- Current Worst-Case Per-Queue Latency d_q
- Per-Queue Delay Bound $\overline{D_q}$
- Allow flow only if:
- $d_q \leq \overline{D_q}, \forall q \text{ on path}$
- Latency bound of flow: Determined by $\overline{D_q}$

- Current Worst-Case Per-Queue Latency d_q
- Per-Queue Delay Bound $\overline{D_q}$
- Allow flow only if:
- $d_q \leq \overline{D_q}, \forall q \text{ on path}$
- Latency bound of flow: Determined by $\overline{D_q}$

- Current Worst-Case Per-Queue Latency d_q
- Per-Queue Delay Bound $\overline{D_q}$
- Allow flow only if:
- $d_q \leq \overline{D_q}, \forall q \text{ on path}$
- Latency bound of flow: Determined by $\overline{D_q}$

- Current Worst-Case Per-Queue Latency d_q
- Per-Queue Delay Bound $\overline{D_q}$
- Allow flow only if:
- $d_q \leq \overline{D_q}, \forall q \text{ on path}$
- Latency bound of flow: Determined by $\overline{D_q}$

Delay Budgets

Importance

Delay Budgets

Some Insights

Delay Budgets

Some Insights

Technische Universität Braunschweig

Discussion & Conclusion

Conclusion

decentralized reservation protocols have a long history and are still ongoing

current problems focus on new hardware without per flow shaping

References

[Zhang&Ferrari 1993] H. Zhang and D. Ferrari, "Rate-controlled static-priority queueing," in IEEE INFOCOM '93 The Conference on Computer Communications, Proceedings, San Francisco, CA, USA: IEEE Comnput. Soc. Press, 1993, pp. 227–236. doi: <u>10.1109/INFCOM.1993.253355</u>.

[Frangioni 2017] A. Frangioni, L. Galli, and G. Stea, "QoS routing with worst-case delay constraints: Models, algorithms and performance analysis," *Computer Communications*, vol. 103, pp. 104–115, May 2017, doi: <u>10.1016/j.comcom.2016.09.006</u>.

[Grigorjew 2020] A. Grigorjew et al., "Bounded Latency with Bridge-Local Stream Reservation and Strict Priority Queuing," 2020 11th International Conference on Network of the Future (NoF), Bordeaux, France, 2020, pp. 55-63, doi: 10.1109/NoF50125.2020.9249224.

[Grigorjew 2021] A. Grigorjew, M. Seufert, N. Wehner, J. Hofmann, and T. Hoßfeld, "ML-Assisted Latency Assignments in Time-Sensitive Networking," in 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM), May 2021, pp. 116–124.

[Grigorjew 2022] A. Grigorjew et al., "Constant Delay Switching: Asynchronous Traffic Shaping with Jitter Control," 2022 IFIP Networking Conference (IFIP Networking), Catania, Italy, 2022, pp. 1-9, doi: 10.23919/IFIPNetworking55013.2022.9829777.

[Maile 2023] L. Maile, D. Voitlein, A. Grigorjew, K.-S. J. Hielscher, and R. German, "On the Validity of Credit-Based Shaper Delay Guarantees in Decentralized Reservation Protocols," in *Proceedings of the 31st International Conference on Real-Time Networks and Systems*, in RTNS '23. New York, NY, USA: Association for Computing Machinery, Jun. 2023, pp. 108–118. doi: <u>10.1145/3575757.3593644</u>.

[Maile 2024] L. Maile, K.-S. Hielscher, and R. German, "Combining Static and Dynamic Traffic with Delay Guarantees in Time-Sensitive Networking," in *Performance Evaluation Methodologies and Tools*, vol. 539, E. Kalyvianaki and M. Paolieri, Eds., in Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol. 539. , Cham: Springer Nature Switzerland, 2024, pp. 117–132. doi: <u>10.1007/978-3-031-48885-6 8</u>.

[Zhao 2024] L. Zhao, Y. Yan, and X. Zhou, "Minimum Bandwidth Reservation for CBS in TSN With Real-Time QoS Guarantees," IEEE Trans. Ind. Inf., vol. 20, no. 4, pp. 6187–6198, Apr. 2024, doi: <u>10.1109/TII.2023.3342466</u>.

Technische Universität Braunschweig

Thank you!

More information?

Lisa Maile, lisa.maile@tu-bs.de Institute of Computer and Network Engineering TU Braunschweig, Germany