

Ten years of assisting customers in TSN configuration

September 10, 2024

Jörn Migge, C.T.O. RTaW jorn.migge@realtimeatwork.com

The very beginning

It all started with CAN (Controller Area Network)... We had

- a mathematical formula for upper bounds on CAN bus transmission delays
- the believe that it could
 - allow to make CAN networks safer and optimized
 - be made usable by network engineers (software tool)
- and the will to try to make this happen

We also had

- algorithms for optimal CAN id assignments
- algorithms for optimal frame offset assignments

But there where quite some difficulties to overcome ...

Name	ld(hex)	PayLoad	Period	MinDela	TxMode	Sender	Bound Deadline		Slack	
Frame2	0x2	4 byte		10 ms	E	ECU2	2,408 ms	2 ms	-0,408 ms	
Frame3	0x3	32 byte	100 ms	20 ms	P+E	ECU3	0,661 ms	4 ms	3,339 ms	
Frame5	0x5	3 byte	50 ms		Р	ECU6	3,874 ms	10 ms	6,126 ms	
Frame5	0x5	3 byte	50 ms		Р	ECU6	0,840 ms	10 ms	9,160 ms	
Frame1	0x1	5 byte	30 ms		Р	ECU1	1,720 ms	6 ms	4,280 ms	
Frame1	0x1	5 byte	30 ms		Р	ECU1	1,720 ms	3 ms	1,280 ms	
Frame4	0x4	8 byte	100 ms		Р	ECU3	3,024 ms	20 ms	16,976 ms	
Frame4	0x4	8 byte	100 ms		Р	ECU3	0,840 ms	20 ms	19,160 ms	
Frame4	0x4	8 byte	100 ms		Р	ECU3	0,840 ms	20 ms	19,160 ms	

Upper bounds?

- CAN was used since a while and the simple rule of a maximal bus load of 30% seemed to work fine ...
- In general, because of overapproximation, no explanation can be given ..

We added Simulation

- as complementary evaluation technique
- and with the possibility to re-simulate and **illustrate as Gantt** chart the scenarios where the **simulation maximum** has been seen: **observed unfavorable scenario**

How to make simulation max become closer to the worst-case is a research topic:

P. Keller, N. Navet, "Approximation of Worst-Case Traversal Times in Real-Time Ethernet Networks: Exploring the Potential of Many-Objective Optimization for Simulation Aggregation", Proc. 20th IEEE International Workshop on Factory Communication System (WFCS 2024), Toulouse, France, April 17-19, 2024.

- **CAN ids**: there were more used as a composed message identifier for filtering than ass used as priorities
 - We developed an algorithm that changes only a minimal number of CAN IDs
- **Transmission offsets**: some ECU cannot support them or only with a higher granularity for the offsets
 - We adapted and extended our algorithm accordingly

- The mathematical model makes precise assumptions about the physical system, that need to be checked
 - We added trace analysis
 - Priority inversion
 - Actual periods and occurrences of frames
 - Frame sizes and Bit stuffing estimations

- Engineers started to appreciate our tool when the maximal bus load rule reached 50%
 - With the optimization of priorities, the introduction of offsets, the computation of upper bounds it is safer to go beyond 50 %

AFDX

- Our Ethernet journey actually started with **AFDX**, at a time when **BMW** was already investigating seriously if **Ethernet** could become a solution for the automotive domain
- Network Calculus provided formulas for computing upper bounds on network traversal times, but they had the reputation to provide pessimistic bounds
- A research and technology transfer project called "PEGASE" was initiated by our academic partner ONERA in order to **improve the precision of Network Calculus delay bounds**. Our role was to implement the new formulas in a software tool, to make them available to industrial users.
- This was the starting point for a long-term collaboration with ONERA that has allowed to extend Network Calculus and the support of **TSN** in our tool .

Standard's name	Also known as	nb
Strict Priority	IEEE 802.1p – 1998	_
Forward and Queueing for Time- Sensitive Streams (FQTSS)	IEEE 802.1Qav – 2009	Credit Based Shaper (CBS)
Enhancement for Scheduled Traffic	IEEE 802.1Qbv – 2015	Time Aware Shaper (TAS)
Frame Preemption	IEEE 802.1Qbu – 2016 & IEEE 802.3br – 2016	_
Asynchronous Traffic Shaping (ATS)	IEEE 802.1Qcr - 2020	_

- They have an important impact not only on delays but also on memory requirements
- Can be used in a combined manner

Configuration of TSN mechanisms

ateControlList + -	Name* Asap:ES_1:Eth	nernetPort_14 (->R	2)	IsDefaultConf	iguration*				
Asap:ES_1:EthernetPort_14 (->R2)	GateOperations Ports								
Asap:ES_2:EthernetPort_13 (->R2)	1 selected GateOpera	itions +	+ Ψ -						
Asap:ES_3:EthernetPort_16 (->R2)	Interval	StartTime	EndTime	TC : CC	TC : Audio	TC : Video	TC : Dat		
Asap:ES_4:EthernetPort_17 (->R1)	0,026000 ms	3,890000 ms	3,916000 ms	open	closed	closed	closed		
Asap:ES_5:EthernetPort_15 (->R1)	5,204000 ms	3,916000 ms	9,120000 ms	closed	open	open	open		
Asap:ES_6:EthernetPort_11 (->R1)	0,010000 ms	9,120000 ms	9,130000 ms	open	closed	closed	closed		
Asap:ES_7:EthernetPort_12 (->R1)	0,432000 ms	9,130000	0 562000 mg	closed	open	open	open		
Asap:ES_8:EthernetPort_18 (->R1)	0,026000 ms	9,562000	тас	open	closed	closed	closed		
Asap:R1:EthernetPort_1 (->ES_6)	5,400000 ms	9,588000	IAS	closed	open	open	open		
Asap:R1:EthernetPort_2 (->ES_7)	0,010000 ms	14,988000		open	closed	closed	closed		
Asap:R1:EthernetPort_3 (->ES_5)	4,122000 ms	14,998000 ms	19,120000 ms	closed	open	open	open		
Asap:R1:EthernetPort_4 (->ES_4)	0,010000 ms	19,120000 ms	19,130000 ms	open	closed	closed	closed		
Asap:R1:EthernetPort_5 (->R2)	9,990000 ms	19,130000 ms	29, 20000 ms	closed	open	open	open		
Asap:R1:EthernetPort_6 (->ES_8)	0,010000 ms	29,120000 ms	29,130000 ms	open	closed	closed	closed		
Asap:R2:EthernetPort_10 (->R1)	5,858000 ms	29,130000 ms	34,988000 ms	closed	open	open	open		
Asap:R2:EthernetPort_7 (->ES_2)	0,010000 ms	34,988000 ms	34998000 ms	open	closed	closed	closed		
Asap:R2:EthernetPort_8 (->ES_1)	4,122000 ms	34,998000 ms	39,120000 ms	closed	open	open	open		
Asap:R2:EthernetPort_9 (->ES_3)	0,010000 ms	39,120000 ms	39,130000 ms	open	closed	closed	closed		

Mechanisms may be combined

			1
Name* Classes C	onfiguration	TAS Coofig TAS Gate Contro	Lists
ATS Config ATS paran	neters	CBS Config CBS Idle Slopes	
4 ClassConfigurations	+ -		
TrafficClass	Priority Express	SchedulingPolicy	
C&C	7 true	FIFO	
Audio	6 false	CBS	
Video	5 false	ATS	
Data	4 false	FIFO	
	Priorities	5	

GateControlLis

\Rightarrow a lot of parameters that must be configured "well": correct and optimized

RealTime-at-Work

GroupId	Ingress	Egress	MaxResidence	SchedulerId	CBS	Max Size	CIR	Load
n/a	n/a	ES_1/EthernetPort_14	n/a	0	326 byte	306 byte	2 Mbit/s	1956,000 kbit/s
n/a	n/a	ES_1/EthernetPort_14	n/a	1	326 byte	306 byte	2 Mbit/s	1956,000 kbit/s
n/a		ES_1/EthernetPort_14	n/a	2	582 byte	562 byte	3,5 Mbit/s	3492,000 kbit/s
n/a	ATC	ES_1/EthernetPort_14	n/a	4	582 byte	562 byte	3,5 Mbit/s	3492,000 kbit/s
n/a	AI2 -	ES_1/EthernetPort_14	nja	6	326 byte	306 byte	2 Mbit/s	1956,000 kbit/s
n/a		ES_3/EthernetPort_16	n/a	0	326 byte	306 byte	2 Mbit/s	1956,000 kbit/s
n/a	n/a	ES_5/EthernetPort_15	n/a	0	326 byte	306 byte	2 Mbit/s	1956,000 kbit/s
0	R2/EthernetPort_8	R2/EthernetPort_10	n/a	0	582 byte	562 byte	11 Mbit/s	10896,000 kbit/s
0	R1/EthernetPort_5	R1/EthernetPort_1	n/a	0	582 byte	562 byte	5,5 Mbit/s	5448,000 kbit/s
1	R1/EthernetPort_5	R1/EthernetPort_6	n/a	1	582 byte	562 byte	5,5 Mbit/s	5448,000 kbit/s
3	R1/EthernetPort_5	R1/EthernetPort_3	n/a	3	582 byte	562 byte	7 Mbit/s	6984,000 kbit/s
6	R2/EthernetPort_8	R2/EthernetPort_7	n/a	6	326 byte	306 byte	2 Mbit/s	1956,000 kbit/s
7	R2/EthernetPort_9	R2/EthernetPort_7	n/a	7	326 byte	306 byte	2 Mbit/s	1956,000 kbit/s
6	R1/EthernetPort_3	R1/EthernetPort_5	n/a	6	326 byte	306 byte	2 Mbit/s	1956,000 kbit/s
8	R2/EthernetPort_10	R2/EthernetPort_7	n/a	8	326 byte	306 byte	2 Mbit/s	1956,000 kbit/s
7	R1/EthernetPort_3	R1/EthernetPort_1	n/a	7	326 byte	306 byte	2 Mbit/s	1956,000 kbit/s

Configuration & Optimization Goals

- Meeting timing (deadlines, jitters, synchronization) & reliability constraints for each of the flow
- Max memory available in network devices
- Meeting network interfaces & bridge ports capabilities: delays, TSN support, memory (# of GCL),
- CPU overhead in end-systems in case of SW implemented mechanisms
- Network configuration robustness wrt to departure from assumptions
- Evolutivity: e.g., adding streams without global re-configuration

⇒ Multi-dimensional problem

...

Configuration of TSN mechanisms

Our configuration algorithms

- use worst-case analysis to validate the potential solution (Network Calculus, ...)
- are based on **optimality results** if possible
- or **heuristics**, based on our **deep insight on how scheduling mechanism work** and what they allow to achieve

Remarks:

- we have done experiments on CBS configuration with **genetic algorithms**, but the solutions where not better and took several hours to converge, compared to less than a minute for the heuristics
- we are also looking into AI approaches, but for know we have not yet found any efficient approach for the scheduling problems themselves

What can be achieved with TSN mechanisms?

Interferences experienced by a packet can be caused by:

- Lower-priority traffic
- Same-priority traffic
- Higher-priority traffic

TSN scheduling mechanisms may reduce one or several types of interferences.

We are using TAS in a particular way:

- time triggered scheduling for critical a class
- bandwidth partitioning with respect to all other traffic classes

Constraints typically addressed:

ZeroConfig-TSN (ZCT)

5 m 🐽

Solutions

ETFA 2024

Ten years of assisting customers in TSN configuration

continuously incoming frames accumulate: Switch1:P4 (->Switch2) Zoom: <- -> - + -- ++ <+> |+| Scenario start Start of Maxir

Without CBS shaping, 4 streams of

? Zoom: <- -> - + -- ++ <+> |+| Scenario start Start of Maxim Go To: Cursor2: Cursor1: Memory Max = 76243 bytes CC5 (p=6) CC4 (p=6) CC2 (p=6) CC1 (p=6) AD1 (p=5) VD11 (p=4) VD3 (p=4) VD2 (p=4)VD1 (p=4)TFTP4 RRQ TFTP4_ACK 111 1111 TFTP2_DAT 11 1111 Priority **v** 300ms + 5ms + 10ms

With CBS shaping, only few frames of the 4 streams arrive at the same time:

Switch1:P4 (->Switch2) Zoom: <- -> - + -- ++ <+> |+| Scenario start Start of Maxir ? Go To: Cursor2: Cursor1: Memory Max = 3141 bytes CC5 (p=7) CC4 (p=7) CC2 (p=7) . CC1 (p=7) AD1 (p=6) VD11 (p=5) VD3 (p=5) VD2 (p=5) CBS: Video TFTP4 RRQ (Priority v 1s + 500us

We offer training that allows users to learn through our design tool

- how TSN mechanism work
- and when to apply them

Memory requirements in

switch port with CSB

shaping:

Training

provide valuable insights!

Unfavorable Scenarios

14

Illustrated definitions of shapers

Slide from "What are the relevant differences between Asynchronous (ATS) and Credit Based (CBS) Shaper?", M. Turner, J. Migge, TSN/A Conference, 2023. Re-used with permission.

^[1] Marc Boyer. Equivalence between the theoretical model and the standard algorithm of Asynchronous Traffic Shaping. 2022. hal-03788302

Conclusion and outlook

Conclusion

- Applying state of the art scheduling theory allows to improve designs
- Theories need to be adapted to take into account real word particularities
- Academic collaborations where and are crucial for meeting our initial goals

Outlook

- We listen to customer needs and try to support new scheduling mechanisms: HTB, PON, ...
- We seek to increase of the number of criteria taken into account by the configuration algorithms
- We continuously seek to improve our configuration algorithms with respect to real-world requirements

"We help you build provably safe and optimized critical systems"

Contact: jorn.migge@realtimeatwork.com C.T.O. RTaW