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Abstract—In self-navigation problems for autonomous vehicles,
the variability of environmental conditions, complex scenes with
vehicles and pedestrians, and the high-dimensional or real-time
nature of tasks make segmentation challenging. Sensor fusion
can representatively improve performances. Thus, this work
highlights a late fusion concept used for semantic segmentation
tasks in such perception systems. It is based on two approaches
for merging information coming from two neural networks, one
trained for camera data and one for LiDAR frames. The first
approach involves fusing probabilities along with calculating
partial conflicts and redistributing data. The second technique
focuses on making individual decisions based on sources and
fusing them later with weighted Shannon entropies. The two
segmentation models are trained and evaluated on a particular
KITTI semantic dataset. In the realm of multi-class segmentation
tasks, the two fusion techniques are compared and evaluated
with illustrative examples. Intersection over union metric and
quality of decision are computed to assess the performance of
each methodology.
Keywords: segmentation models, vehicle perception, belief
functions, PCR6 fusion rule, entropy.

I. INTRODUCTION

A. Perception for autonomous driving

In perception systems of self-driving cars, neural networks
(NN) already serve as strong pillars for several tasks such
as computer vision. Convolutional neural networks (CNNs)
[4], [5], and visual transformers [6] are now more resilient
and efficient in image segmentation. However, in the top of
this NNs efficiency, architectures of various dimensionalities
and large number of parameters can benefit from information
fusion and data merging.

Thus, fusing sensors can significantly impact the perfor-
mance of algorithms designed for autonomous driving tasks.
Aleatoric uncertainty arises from sensors, while epistemic
uncertainties occur from the models, leading to imprecise in-
formation and conflicts. Unlike aleatoric uncertainty, epistemic
uncertainty can be reduced through increased data and model
confidence [1], [2]. When merging data, the improvement in
performance can depend on the choice of fusion technique and
its implementation. In terms of fusion, late fusion (merging
information at decision level) has been explored to potentially
enhance the model’s output by providing better reasoning on
which source of information impacts the final decision more.

For self-driving tasks, various sensors like cameras, Li-
DARs, or radars are used to perceive the environment from
different point of view. Some sensors have a greater impact
on decision-making than others. Additionally, computer vision
tasks like segmentation pose challenges for autonomous ve-
hicles due to environmental variability, complex scenes, and
real-time requirements [3]. A well-designed fusion strategy
can significantly improve final output results.

B. Multi-modal evidential information fusions

Common approach in fusion is to convert information
sources into evidential formulations using belief functions.
Many studies are exploring the incorporation of Dempster-
Shafer’s theory into deep neural networks to achieve plausible
reasoning. In self-navigation tasks, works such as [7], [8], and
[9] demonstrate the integration of multi-sensor information or
the combination of neural networks with evidence theory for
perception tasks like object recognition (road, pedestrian, etc.)
or area partitioning within segmentation.

Furthermore, models such as evidential cross-fusion ap-
proach, inspired by [10], incorporate cross-fusion alongside
the neural network layer, enabling information exchange be-
tween sensors. These methodologies stand out for their ability
to handle situations with imprecise data and conflicting sources
by introducing a new class responsible for uncertainties. The
concept revolves around using distance to prototypes for
road detection or segmentation. Instead of a probabilistic
approach, an evidential formulation based on belief functions
is employed, and decisions rely on Dempster-Shafer’s (DS)
rule of combination. Once a fusion rule is applied, decision-
making can range from a simple argmax function to more
sophisticated methods (e.g. Decision Based on Interval [11]).
Dempster’s rule of combination can be easily extended to
combine more than two sources of evidence. Its commutative
and associative mathematical properties make the DS rule
appealing for implementation, permitting sequential fusion,
without altering the fusion results, regardless of the data
merging order. While the DS rule usually produces good
results for self-driving tasks, there are scenarios where its
dictatorial behavior yields wrong decisions. Some alternatives
and comparative analyses between DS and other fusion rules



are available in [12], [13]. Thus, while [9] presented the DS
rule internally, by adding a mass-function merging module at
the end of the architecture [14], this work focuses on fusing
probabilities generated from the softmax of each architecture.

C. Contributions

In [10], three fusion approaches are mentioned: early fusion,
cross fusion, and late fusion. Among these, the second one is
preferred due to the advantage of progressively exchanging
features. However, the focus of [10] is more on road de-
tection, emphasizing neural network capabilities over fusion
techniques.

Late fusion of data can preserve important features captured
by sensors, impacting the final decision. Since a multi-modal
system is considered with two sources, this work proposes
approaching a late fusion. Thus, the focus is on more suitable
rules to merge two individual models for multi-class segmen-
tation. The first method is based on the Proportional Conflict
Redistribution (PCR) rule, while the second one weights fused
decisions based on their quality computed from Shannon
entropy [15].

The PCR fusion has seen improvements over the years
(PCR5, PCR6, and PCR6+), considering the complexity, math-
ematical properties, sophisticated conflict management and the
number of information sources. PCR5, PCR6, and PCR6+

rules are not associative and they can be used to fuse more
than two sources of evidence altogether. PCR5 and PC6 do
not preserve the neutrality of the vacuous BBA in the fusion
process, whereas PCR6+ does. These three aforementioned
rules coincide when we have only two sources of evidence
to combine. Further details about these rules can be found in
[16].

The work continues with the following sections: Back-
ground (basics about belief functions, fusion rules, and
decision-making), Implementation (architecture and exempli-
fications of fusion rules), Results (dataset and results for
proposed techniques), and Conclusion.

II. BACKGROUND

A. Fusion and data representation

Let Θ = {θ1, θ2, . . . , θN} represent the universe of ele-
ments, known as the frame of discernment (FoD), with mu-
tually exclusive elements of single cardinality referred to as
singletons [19]. The notation of the mass function, or the
basic belief assignment (BBA), m(·) denotes a distribution
m : 2Θ → [0, 1], satisfying:

m(∅) = 0, and
∑
X⊆Θ

m(X) = 1. (1)

where 2Θ denotes the power set1 of Θ.
Here, m(X), known as the mass of element (i.e., subset) X

of Θ, represents the available evidence committing to event
X by the source of evidence. The definition (1) corresponds
to Shafer’s closed world assumption. A subset X is termed

12Θ is the set of all subsets of Θ including the empty set ∅ and Θ itself.

a focal element of m(·) if and only if m(X) > 0. With
these notations from the belief theory, different fusion rules
can be defined to combine several distinct (i.e. cognitively in-
dependent) sources of evidence. The fundamentals of evidence
formulation can be easily translated to Bayesian theory as long
as only singletons are considered and uncertainty is not taken
into account.

1) PCR6+ Fusion Rule: The expression for the PCR6+

fusion of S ≥ 2 BBAs can be computed using the formula
mPCR+

1,2,...,S(∅) = 0, where each A ∈ 2Θ \ ∅. The final computa-
tion formula is:

mPCR6 +

1,2,...,S(A) = mConj
1,2,...,S(A)

+
∑

j∈{1,...,F}|A∈Xj∧πj(∅)

κj(A)
∑

i∈{1,...,S}|Xji
=A

mi (Xji)


· πj(∅)∑

X∈Xj

(
κj(X)

∑
i∈{1,...,S}|Xji

=X mi (Xji)
)
 ,

(2)
where mConj

1,2,...,S(.) is the classical conjunctive fusion rule [16],
F is the cardinality of the cartesian product of the sets of focal
elements of the S BBAs, κj(A) and κj(X) denote the binary
indices representing factors A and X , respectively, which
contribute to conflicting aspects within the product. Detailed
expressions for computing element πj(∅) can be found in [16],
[17] with MatlabTM code included.

2) Shannon Entropy: In the probabilistic context, Shannon
entropy serves as a common tool for quantifying uncertainty
and distributing randomness. Low entropy values indicate
more precise predictions or certainty, whereas high entropy
suggests uncertainty and misinformation. Shannon’s entropy,
denoted2 by H(PN ), is defined as:

H (PN ) ≜ −
|Θ|∑
i=1

P (θi) log (P (θi)) , (3)

where, by convention, P (θi) log (P (θi)) = 0 is taken if
P (θi) = 0. Shannon entropy is expressed in nats if natural
logarithm function is taken in (3), or it is expressed in bits if
the logarithm function is considered in base 2 (i.e. log2).

The maximum of Shannon entropy is obtained with the
uniform pmf defined by P unif(i) = 1/N for i = 1, 2, . . . , N ,
and we have

Hmax = H(P unif
N ) = log(|Θ|) = log(N). (4)

Consequently, assuming that some decisions can be made,
these decisions are fused by weighting their quality calculated
from the entropy. Once a weighting factor is computed with
respect to the highest entropy (to work with normalized
entropy), the decisions can be fused by a simple weighted
averaging rule (See Section III-B2).

2Here PN is a probability mass function (pmf) defined over FoD
Θ = {θ1, θ2, . . . , θN}.



B. Decision-Making

Considering a probability mass function obtained with a
fusion rule, the last step involves decision-making to obtain
the results. Thus, the elements of mPCR6+ represent decisions
with respect to the focal elements, while X̂ represents the
final decision. The final decision is characterized by the
maximum values among the fused mass functions of mX ,
where X ∈ 2Θ \ {∅}. In this work, argmax is used for the
final decision; therefore, X̂ is defined as:

X̂ = arg max
X∈2Θ\{∅}

mX (5)

where the values are computed based on the applied fusion
technique. Mass functions mX(·) represent the obtained values
through fusion for each chosen focal element X (each class,
typically the road (R), the vehicles (V ) and the background
(B)). This step is necessary when using the PCR6+ fusion
scheme, not for the entropy computation

After reaching the final decision, the quality indicator can be
computed according to [11]. This evaluates the fairness of the
decisions. This confidence factor, denoted as q(X̂), is given
by:

q(X̂) ≜ 1− mX∑
X∈2Θ\{∅} mX

(6)

The larger the value of the quality indicator, the more
confidence the model has.

Once the BBAs representing the evidence in the correspond-
ing pixels are evaluated, a final task remains: to determine the
classes for each pixel. Therefore, given the previous statement
(5) as presented in [11], the quality of decisions can be
computed with respect to classes.

III. IMPLEMENTATION

A. Neural Network Architecture

For the implementation, two identical segmentation models
are considered. They are both CNN-based, similar with the
two pipelines of a cross-fusion model [10], but individual. In
this case, one represents the neural network architecture that
is trained with camera images, and another identical one is
used to learn features from dense map LiDAR data.

The dense depth map images are obtained from 3D points
clouds using projection and translating matrices [21]. Both of
the models have 24 layers, following an architecture3 with
encoder, context module, and decoder like illustrated in Fig.
1. The model uses convolutions and up-sampling operations,
regularized with Dropout. The paper itself is mainly oriented to
emphasize the strength of fusion rather than how efficient the
neural network models are. In this way, the effects of fusing
two NN models, one based on LiDAR and the other based on
camera features allow interchanging meaningful information
from the two sources.

By using a common CNN architecture, the output represents
probability distributions formed out of logits, as a result of the
last layer. The last layers are softmax activation functions with

3https://github.com/vasigiurgi/fusing-segmentation-models

values mapped between 0 and 1. Thus, the models represent
two independent sources of information with probability out-
puts.

Fig. 2 shows more in detail the fusion approach block from
Fig. 1. It can be observed how the two segmentation models
are positioned with respect to fusion rule and decision making.

B. Fusion of the segmentation models

As mentioned, once the neural networks are computed,
two approaches are intended to be applied from a fusion
perspective. Following, the two sources of information have
3 classes each: R (Road), V (Vehicle), and B (Background).

1) PCR6+ fusion: Below, the algorithm for the PCR6+ is
briefly explained, see [16] or [17] for details.

Algorithm 1: PCR6+ fusion
Input:
mL = (m1(R),m1(V ),m1(B))
mC = (m2(R),m2(V ),m2(B))
Output: mPCR6plus: m1 fused with m2

1 NbrSources← sources of information;
2 CardTheta← calculate cardinality (FoD);
3 Combinations← generate all combinations of
4 sources;
5 for c in Combinations do
6 PC ← current combination;
7 massConj ← calculate mass conjunction for PC;
8 Intersections← calculate intersection of sources;
9 if Intersections ̸= 0 then

10 update mPCR6plus based on PC;
11 end
12 else
13 calculate contributions from each source;
14 update mPCR6plus;
15 end
16 end
17 return mPCR6plus;

For instance, suppose that the (Bayesian) BBA for the
camera is:

[m1(R) = 0.8, m1(V ) = 0.15, m1(B) = 0.05]

and for the LiDAR:

[m2(R) = 0.55, m2(V ) = 0.25, m2(B) = 0.20]

The result of masses for PCR6+ (mPCR6+ , noted mf )
fusion will output:

[mf (R) = 0.845, mf (V ) = 0.145, mf (B) = 0.010]

resulting in the final decision on the singleton R which
represents the road.
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Figure 1: Fusion of segmentation models: LiDAR model and camera model.

2) Weighting quality decisions fusion based on Shannon’s
Entropy: The second approach works by making some de-
cisions based on the Bayesian output of the architectures
considering entropies thereafter to check how consistent in-
formation is. Suppose that for a camera model, a pixel (i, j),
is considered with the following mass values for each class:

[m1(R) = 0.80, m1(V ) = 0.15, m1(B) = 0.05]

In this situation, taking the decision for pixel (i, j) = R
(from camera model) can be relevant, but not 100% sure
because m1(R) < 1. In the same way, for a LiDAR frame,
suppose a pixel with mass values accordingly:

LidNet

CamNet

Lid Net

CamNet

PCR6 + Rule

Decision-Making

Decision-Making

Entropy-based
fusion

Figure 2: Fusion approach diagram.

[m2(R) = 0.55, m2(V ) = 0.25, m2(B) = 0.20]

The decision will be the same, pixel (i, j) = R, which
can be again relevant, but the decision tends to be riskier as
m2(R) is just above 0.5. Instead of fusing directly proba-
bilities, another way is to fuse weighted decisions by their
quality calculated from entropy. Consequently, in the previous
example, based on m1, the early state of the decision will
represent R (road) class for the camera segmentation model:

[md1(R) = 1, md1(V ) = 0, md1(B) = 0].

Then accordingly to the weight, the decision will be up-
dated. The weight of source 1 for this pixel is calculated by
the quality measure as:

w1 = 1− H(m1)

Hmax ,

where H(m1) is the entropy of m1 because m1 is Bayesian4.
Therefore, H(m1) corresponds to Shannon entropy, while
Hmax is the maximum of Shannon entropy obtained for a
uniform probability mass function as highlighted in Section
3.

Based on m2, the R class will be decided, therefore judg-
ment based on LiDAR data is:

md2(R) = 1, md2(V ) = 0, and md2(B) = 0,

4For a more general (non-probabilistic) context when working with non-
Bayesian BBAs we could use the generalized entropy for belief function
defined in [18].



with the weight of source 2 (LiDAR) provided by the quality:

w2 = 1− H(m2)

Hmax .

Then the decisions are fused by a simple weighted averaging
rule as follows:

md(R) =
w1

w1 + w2
·md1(R) +

w2

w1 + w2
·md2(R),

md(V ) =
w1

w1 + w2
·md1(V ) +

w2

w1 + w2
·md2(V ),

md(B) =
w1

w1 + w2
·md1(B) +

w2

w1 + w2
·md2(B).

In this simple example |Θ| = 3 since the FoD has 3
singletons only (Eq. 4, where N = 3). Therefore, w1 will have
a greater value than w2 due to the lower entropy of H(m1).
Consequently, the camera source shows greater confidence.

IV. EXPERIMENTAL RESULTS

A. LiDAR-Camera Dataset and Networks Training

The LiDAR-camera dataset, known as the semantic KITTI
dataset, initially comprises 200 camera images. This dataset
closely resembles the structure of the KITTI Stereo and KITTI
Flow 2012/2015 datasets. However, officially, the KITTI se-
mantic dataset includes no LiDAR frames, such as those
found in the road dataset. Henceforth, this particular KITTI
semantic adds the lidar point clouds. Further, the 3D point-
cloud points corresponding to the existing camera frames need
to be identified within the extensive original KITTI raw dataset
[20], which encompasses data for all tasks.

To augment the dataset, LiDAR frames have been success-
fully projected and up-sampled for 127 out of the 200 camera
images, resulting in dense depth images. The mapping of
a 3D LiDAR point x to a point y in the camera plane is
accomplished through the application of the KITTI projection
P , rectification R, and translation T matrices [21].

y = PRT x (7)

To address the sparsity of the projected LiDAR scan, an
up-sampling technique is applied to generate a dense depth
map, as illustrated bellow, in Fig. 3. The up-sampling process
follows the methodology detailed in [9] and [21].

The LiDAR frames presented earlier are integrated along-
side the camera ones in the two segmentation models, each

individually with the same ground truth for both pipelines. The
masks are represented by three elements corresponding to the
classes: road (magenta), vehicle (dark blue), and background
(blue), according to the original annotation as illustrated in
Fig 4b.

Camera and LiDAR models receive 127 input frames,
partitioned into 114 for training and 13 images for validation.
Each architecture is trained individually. The segmentation
models are trained for 50 epochs. For the hyperparameters,
mean-squared error and Adam optimizer are used.

B. Segmentation Performance Analysis

For the performance assessment, the intersection-over-union
metric is considered accordingly to [22], and the formula (8).

IoU =
TP

TP + FP + FN
(8)

where TP, FP, and FN represent the true positives, false
positives, and false negatives, respectively. Since the models
are fused using two methods, the metric evaluations will be
computed for each method separately, namely PCR6+ fusion
and fused decisions with entropy and compared at the end.
Initially, the IoU is calculated individually for each frame,
while at the end the average IoU , noted IoU is presented for
results evaluation.

Table I: Performance Metrics.

Fusion schemes
Metric PCR6+ Entropy

Mean IoU 0.7626 0.8009
Highest IoU 0.8780 (img 9) 0.8954 (img 7)
Lowest IoU 0.6074 (img 1) 0.6540 (img 1)

Class-wise IoU

Class R 0.7750 0.8056
Class V 0.5909 0.6590
Class B 0.9219 0.9382

The performances with respect to the IoU metric are shown
in Table I. It can be observed that both approaches share
the worst case (image 1), but for the best value of IoU ,
the fusion method impacts the output differently. Thus, on
average, the decision fusion method with the entropy performs
better (IoU = 0.8009) than the PCR6+ (IoU = 0.7626). The
IoU metric is also calculated for each class individually. As
expected, the class representing vehicles performs the worst

(a) Projection of LIDAR over the camera image (b) Dense depth map image from LiDAR point clouds

Figure 3: LiDAR point clouds pre-processed to 2D images.



(a) Input frame for camera segmentation model (b) Simplified ground truth (R, V and B)

(c) Prediction from the LiDAR Model (d) Prediction from the camera model

Figure 4: (a) Train image, (b) Ground truth mask
Predictions from segmentation models: (c) LiDAR and (d) camera.

in terms of segmentation, while the class of the background is
best identified. This happens because of the segmented area of
the pixels related to a class. Such behavior is already inherent
in what the model learns, while the fusion methods only tend
to improve the quality of information provided by the source.

The set of frames, Fig. 4a and Fig. 4b represent the original
image and mask, respectively Fig. 4c and Fig. 4d stand for
predictions from the segmentation models of each pipeline.

The simplified ground truth has only 3 classes (Road,
Vehicle and B ackground). Since the LiDAR data is up-
sampled and mapped into a 2D dense map image, some
of the features are less pronounced than in the camera’s
case. However, there are scenarios when outputted images via
LiDAR show important characteristics of the classes.

In Fig. 5, the images with the worst IoU score are high-
lighted within the two fusion approaches. At the top, the
ground truth is provided for reference, followed by images
obtained through fusion via PCR6+ (Fig. 5b) and fused
decisions weighted by entropies (Fig. 5c).

Finally, Fig. 6 presents the best case for PCR6+, while
Fig. 7 presents the best case for fused entropies. Here, the
two fusion approaches do not share the same frame for the
best case. The images from the top part of both illustrations
represent the ground truth images (Fig. 6a and Fig. 7a).

The best results with respect to intersection over union are
shown in the bottom part of the illustrations. The fusion based
on PCR6+ works better for Fig. 6b (image 9), while the fusion
with Shannon entropies performs better for Fig. 7b (image 7
according to the table).

Considering Table I, the approach based on fused decisions
demonstrates superior performance, as indicated by the higher
IoU score compared to the PCR6+ method. Although this
example shows a performance advantage for the fused decision
approach, it is important to note that PCR6+ is specifically
designed for multi-source information systems. The conflict

(a) Ground truth for the worst case scenario

(b) Worst IoU score for the approach-based PCR6+

(c) Worst IoU score for
the approach-based Shannon entropy

Figure 5: Worst case scenario.

redistribution feature of PCR6+ could offer significant ad-
vantages in scenarios involving a higher number of sources,
potentially leading to more compelling results in such contexts.

C. Quality of Decision Assessment

The quality of the decision is calculated for the best case
scenario of the entropy method, i.e. image 7, and PCR6+



(a) Ground truth (img 9)

(b) Best IoU score PCR6+ (img 9)

Figure 6: Best case scenario PCR6+.

(a) Ground truth (img 7)

(b) Best IoU score Entropy (img 7)

Figure 7: Best case scenario Shannon entropy.

fusion, i.e. image 9. On the top part, Fig. 8a expresses
how confident decisions are after a PCR6+ fusion, while the
bottom image, Fig. 8b shows the quality of judgments when
considering fused decisions with Shannon weighted entropies
(image 7).

Both illustrations show areas at the borders between classes
that are more challenging for segmentation, while large areas
such as background are much easier to segment efficiently.
Computing a numerical percentage of pixel-related decisions
over a threshold in terms of confidence results distinguishes
the two methods noticeably.

Thus, the quality of decisions for fused judgments with
Shannon entropy is more consistent. Regardless of the chosen
threshold, whether it’s 0.5 or 0.95, approximately 94.85%
of decisions are confident. In contrast, judgments based on
PCR6+ fusion exhibit some variability. Closer to 1, e.g.
threshold equals to 0.95, the decisions are less confident
with a score of 75.48%, while with a threshold of 0.5, the

(a) Quality decision based on PCR6+ (img 9)

(b) Quality decision based on Entropy (img 7)

Figure 8: Quality of decision for best case scenarios.

decisions seem to be more confident showing a score of
99.36%. However, this confidence can be problematic as it
is very close to 0.5. This explains the gradient colors for
decisions based on PCR6+ fusion, and why the bottom image
is less chromatically diverse.

V. CONCLUSION

This paper shows two ways of late fusion for two deep-
learning segmentation models based on camera and LiDAR
frames. The architectures are trained initially as probability
models and later are fused via a conflict redistribution fusion
(PCR6+) or based on fused decisions with respect to Shannon
entropy.

The work focuses more on the fusion techniques and their
application for perceptive tasks and less on the performances
of the neural networks and complexity for real-time tasks. For
simplicity, three classes are considered and the approaches are
assessed using mean intersection over union metric.

The method based on weighting fused decisions gives better
results, but PCR6+ is explicitly designed for multi-source
information systems, where its conflict redistribution capabil-
ity can provide substantial benefits in situations involving a
greater number of sources. The results are presented from a
qualitative point of view, but robustness and generalization are
aimed to be considered for future investigations, as well as
model optimization. In the fusion part, contextual discounting
to investigate the contribution of each source is under exami-
nation as well as the fusion technique positioning.
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