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Abstract—The Belief Functions (BFs) introduced by Shafer in
the mid of 1970s are widely applied in information fusion to
model epistemic uncertainty and to reason about uncertainty.
Their success in applications is however limited because of their
high computational complexity in the fusion process, especially
when the number of focal elements is large. To reduce the
complexity of reasoning with BFs, we can envisage as a first
method to reduce the number of focal elements involved in the
fusion process to convert the original Basic Belief Assignments
(BBAs) into simpler ones, or as a second method to use a simple
rule of combination with potentially a loss of the specificity
and pertinence of the fusion result, or to apply both methods
jointly. In this paper, we focus on the first method and propose
a new BBA granulation method inspired by the community
clustering of nodes in graph networks. This paper studies a
novel efficient Multi-Granular Belief Fusion method (MGBF).
Specifically, focal elements are regarded as nodes in the graph
structure, and the distance between nodes will be used to discover
the local community relationship of focal elements. Afterwards,
the nodes belonging to the decision-making community are
specially selected, and then the derived multi-granular sources of
evidence can be efficiently combined. To evaluate the effectiveness
of the proposed graph-based MGBF, we further apply this
new approach to combine the outputs of Convolutional Neural
Networks+Attention (CNN+Attention) in the human activity
recognition problem. The experimental results obtained with
real datasets prove the potential interest and feasibility of our
proposed strategy with respect to classical BF fusion methods.

Index Terms—Belief Functions, Basic Belief Assignment,
Graph Networks, Multi-Granular Fusion, Human Activity
Recognition.
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THE Belief Functions (BFs) have introduced in.1976 by
Shafer in his mathematical Theory of Evidence, also

known as Dempster-Shafer Theory (DST) for reasoning about
epistemic uncertainty. They have been widely used in fault
diagnosis [1, 2], activity recognition [3–6], indoor location
[7, 8], and other uncertainty modeling and reasoning applica-
tion areas [9, 10]. However, BFs have been criticized for their
inherent complexity [11], especially in the worse case analysis.
A widely discussed drawback is the exponential computational
complexity of most existing rules of combination of sources
of evidence, especially when the cardinality of the Frame of
Discernment (FoD) and the number of focal elements of the
Basic Belief Assignment (BBA) become large. Currently, the
high computational burden restricts the practical application
of BFs [12–14]. To overcome this serious problem, many
scholars have proposed various BBA approximation methods,
which mainly rely on three principles: the first one is to
reduce the dimension of BBAs according to the belief masses
of focal elements: those focal elements with smaller masses
are regarded as unimportant ones and should be removed
first. The representative methods include k − l − x [15],
Summarization [16] and D1 [17]. The second approximation
strategy is mainly implemented based on the cardinality of the
focal element itself. That is, the focal element with a larger
cardinality is removed to reduce the computational complexity
in the fusion process. The k-additive approximation [18]
followed this kind of simplification approach. The third type of
approximation method is to jointly use the belief masses and
the cardinality of the focal element to determine which focal
element should be removed first. Representative works include
internal and external approximations [19]. The ultimate goal
of these BBA approximation strategies is to obtain a simpler
BBA by removing the redundant focal elements according
to specific chosen criteria. Although all the aforementioned
approaches are reasonable and meaningful to a certain extent,
they still have their limitations, which mainly lie in three
aspects:

• Although the distance metrics between focal elements
have been proposed, the degradation of original BBA in
the process of BBA approximation is still unavoidable,
which in turn affects the performance of the decision-
level fusion;

• As far as we know, only few theoretical approximation
methods can intuitively observe the affinities between
focal elements through visualization. The visualization of
the relationship between nodes is one of the advantages
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of graph networks;
• All existing BBA approximation methods developed so

far focus on the theoretical level, and there are few
works done to verify the effectiveness of the approximate
fusion methods in practical applications. Besides, we
also need to consider whether the classical step-by-step
approximation for changing the original BBA little by
little is necessary for practical application.

Regarding the first and second aspects, the inherent relation-
ship between focal elements needs to be further discussed and
analyzed to avoid degradation as much as possible. However,
the classical approximation methods mentioned above focused
on their discussions on evaluating the local characteristics
(such as uncertainty or entropy) of the single focal element
in the evidence. From a global perspective, it is extremely
important to analyze the proximity and structural information
between focal elements. At present, more and more scholars
study the relationship between focal elements in the sources
of evidence. For example, Chen et al. [20] proposed a novel
Probabilistic Transformation (PT) method based on an ordered
visibility graph. In this method, all focal elements were first
sorted based on the non-effective belief entropy [21], and then
a weighted network structure was constructed to obtain the
Bayesian BBA. In this paper, to achieve the simplification
of the BBA, we discuss the aggregation of focal elements
under the condition of graph network structure, which is
quite different from the method proposed in [20]. Regarding
the third aspect, very few works have been done that do
not attract much attention to provide new interest for the
applications of BFs. In fact, there are some related works
that combine graph structure-based visualization with BFs,
but the focus of the research done is fundamentally different
from the issues discussed in this paper. For example, Zhao
et al. [22] characterized evidence sources as nodes in a graph
network to discuss the weighted fusion of high-conflict sources
of evidence; Xiong et al. [23] also realized the weighted
combination of BBAs with the help of the complex networks.
These two recent works aim to deal with the classical com-
bination problems when sources of evidence are in highly
conflict with each other. In this paper, the original motivation
for using graph structure visualization and convenience is to
reveal the structural relationship information between focal
elements. This necessary step is also a preparation for the
subsequent community detection and multi-granular mapping
between focal elements. It is worth noting that the Multi-
Granular Belief Fusion (MGBF) proposed in this paper has a
different emphasis from the well-known BBA approximation.
MGBF in this paper includes two main steps: 1. This strategy
first focuses on the agglomeration of fine focal elements into
larger or coarse granular ones to find the inherent communities
hidden in focal elements; 2. Then, the specific focal elements
will be selected in the decision-making community, which
aims to preserve the decision information in the original BBA
as much as possible; traditional BBA approximation aims to
obtain the specific simpler BBA, which is intentionally overall
similar or closer but not exactly equal to the original BBA.

B. Challenges

To achieve the efficient graph-based multi-granular belief
fusion, three main issues need to be addressed:

• How to determine the distance degree between focal
elements? This value mainly determines the quality of
community discovery in focal elements;

• How to implement aggregation for focal elements in
the same community, and how to calculate the belief
masses of the derived multi-granular focal elements in
the decision-making community?

• How to effectively use the proposed multi-granular fusion
strategy in the practical application? This novel fusion
strategy aims to reduce the computational complexity of
the fusion process to ensure recognition accuracy.

C. Main Contributions

To solve these three aforementioned problems, we propose
a multi-granular belief fusion method based on graph structure
for BBA granulation. Also, we apply our proposed approach
to deal with Human Activity Recognition (HAR) problem. In
this paper, we first measure the dissimilarity between focal
elements and thus generate the adjacency matrix between focal
elements. Based on this matrix, we can discover the potential
graph-based communities in focal elements. Communities are
often defined in terms of the partition of the set of nodes,
where each node is put into one and only one community.
Communities are used to describe the potential relationship
between focal elements, which comes from the graph theory
[24]. This might happen in a human activity problem where
each focal element represents an activity, and the communities
represent the different groups of activities: one community
for static activities, another community for dynamic activities.
In this article, communities can be detected in a set of focal
elements, and two types of communities will be particularly
generated: the decision-making community and the supporting
community. Among them, the decision-making community
mainly includes the focal elements that play a significant role
in the final decision-making results, such as those with high
belief masses, while the supporting community mainly consists
of the focal elements that play a minor role in the final decision
making. Then, the decision-making community is divided into
the representative fine-grained focal elements and the belief
masses of these core focal elements can be updated with
the help of the remaining focal elements in the supporting
community. Finally, the simpler multi-granular sources of
evidence can be combined by using the classical Proportional
Conflict Redistribution rule #6 (PCR6) rule of combination
developed originally in Dezert-Smarandache Theory (DSmT)
[25]. The main contributions of this paper are summarized as
follows:

• This work proposes for the first time a multi-granular
belief fusion to tackle the problems of BBA granula-
tion. With this new approach, the potential relationships
between focal elements can be detected and visualized
based on the graph structure. This allows us to easily
identify the focal elements belonging to the same com-
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munity. This multi-granular mapping can make efficient
granulation of the original BBAs into fine-grained ones;

• We evaluate the effectiveness of this MGBF approach
in the HAR problems. In this application, the proposed
fusion method is adopted to fuse the outputs of end-
to-end CNN+Attention networks. Besides, extensive ex-
periments of comparisons are conducted to show the
efficiency of the proposed method.

The rest of this paper is organized as follows. In section II,
the basics of BFs and graph networks are presented. Section
III describes the proposed multi-granular belief fusion method
for BBA granulation. The human activity recognition problems
and the related experimental results are given in detail in
Section IV. Finally, the article concludes and gives several
future research directions in the last section.

II. PRELIMINARIES

A. Basics of BFs

In BFs, the concept of FoD represents a set of exhaustive
and exclusive elements which is denoted as Θ ≜ {θ1, . . . , θn}
(n ≥ 2). The power set of Θ, which is the set of all subsets
of Θ (including the empty set ∅, and Θ itself), is denoted
2Θ because its cardinality is exactly equal to 2|Θ|. A Basic
Belief Assignment (BBA) m(·) is defined by the mapping:
2Θ 7→ [0, 1], verifying m(∅) = 0 and

∑
X∈2Θ m(X) = 1. A

subset X of Θ is called a focal element of a BBA m(·) if and
only if m(X) > 0. Besides, the set of focal elements of a BBA
m(·) is denoted F(m) and |F(m)| represents the number of
focal elements of m(·). A BBA is bayesian if all its focal
elements are singletons of the power set of Θ, otherwise it is
referred as a non-bayesian BBA. A source of evidence totally
ignorant is represented by the so-called vacuous BBA mva(·)
for which mva(X) = 0 for all X ⊂ Θ and mva(Θ) = 1. The
belief and plausibility functions are respectively defined for
any subset A ∈ 2Θ by1 - see [26]

Bel(A) ≜
∑

X∈2Θ|X⊆A

m(X) (1)

and
Pl(A) ≜

∑
X∈2Θ|X∩A̸=∅

m(X) (2)

In order to combine two distinct sources of evidence, the
classical Dempster-Shafer rule (DS) in [26] was proposed and
defined by mDS(∅) = 0 and ∀A ∈ 2Θ \ {∅}:

mDS(A) =

∑
X1,X2∈2Θ|X1∩X2=A m1(X1)m2(X2)

1−
∑

X1,X2∈2Θ|X1∩X2=∅ m1(X1)m2(X2)
. (3)

To palliate DS rule drawbacks (see discussions in [27]), the
new Proportional Conflict Redistribution rule #6 (PCR6) was
defined [25] for combining two BBAs by: mPCR6(∅) = 0 and
∀A ∈ 2Θ \ {∅}:

1The symbol ≜ means equal by definition.

mPCR6(A) = m12(A)+∑
X∈2Θ|X∩A=∅

[
m1(A)2m2(X)

m1(A) +m2(X)
+

m2(A)2m1(X)

m2(A) +m1(X)
]. (4)

where m12(A) =
∑

X1,X2∈2Θ|X1∩X2=A m1(X1)m2(X2) is
the conjunctive rule of the two BBAs m1(.) and m2(.), and
where all denominators in (4) are different from zero. If a
denominator is zero, that fraction is discarded. The general
PCR6 formula for combining more than two BBAs altogether
is given in [25], Vol. 3.

B. Basics of Graph Networks

Generally, a graph is a two-tuple composed of a set of points
V = {vi} and a set of unordered pairs of elements in E =
{ek}, denoted as G = (V,E). The elements vi in V is called
a node, and then element ek in E is called an edge [28, 29].
We can use eij = 1 to represent node i is associated with
node j. If eij = 0, it means node i is unrelated to node j.

In a graph network, the adjacency matrix can represent the
adjacency between nodes. Considering a graph G = (V,E),
the adjacency matrix of G having n nodes is an n×n matrix
with the following properties:

• If there is an edge between node i and node j, the element
Aij in the matrix is 1, otherwise it is 0;

• For an undirected graph, the adjacency matrix is symmet-
ric, and the main diagonal is zero.

III. MULTI-GRANULAR BELIEF FUSION BASED ON GRAPH
STRUCTURE

Inspired by the interaction between nodes in graph net-
works, a novel graph-based multi-granular belief fusion
method for BBA granulation is proposed. This novel approach
can discover communities in original focal elements and then
realize the multi-granular mapping within communities. After-
wards, the multi-granular fusion can be easily implemented in
the multi-grained layer to reduce the computational complexity
of the original high-dimensional evidence fusion.

A. The Framework of Multi-Granular Belief Fusion

Fig.1 shows the framework of the proposed efficient multi-
granular belief fusion method. The main steps of MGBF are:

• Step 1: the distance between focal elements is measured
to construct the dissimilarity and adjacency matrix. Then,
the relationship between focal elements can be visualized;

• Step 2: the inner community can be detected among focal
elements, and those specific elements in the decision-
making community are selected to realize the multi-
granular mapping;

• Step 3: the derived multi-granular sources of evidence can
be efficiently fused based on the classical PCR6 rule.
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Fig. 1: The Framework of Multi-Granular Belief Fusion
for BBA Granulation.

B. Construction of adjacency matrix and visualization

To complete the deletion of quasi-redundant focal elements
in traditional BBA approximation, researchers have proposed
several methods [11, 17, 19] based on some measures of
dissimilarity of focal elements. In this paper, we go further
and present the relationships of focal elements represented by
graphs. Based on this type of representation, we can more
easily identify and visualize the communities existing among
focal elements, and then complete the multi-granular mapping
of the fine-grained focal elements of the original sources
of evidence. The distance between focal elements usually
represents the dissimilarity between focal elements, which is
of great significance for effective BBA granulation. Generally
speaking, it should meet the characteristics of non-negativity
and symmetry. Denœux proposed in [19] a method to evaluate
the impact of the transfer of the masses of focal elements Fi

and Fj to their union Fi ∪ Fj on Weighted Average of the
Cardinalities of Focal Elements (WACFE) of m(·) defined2 by
|m| =

∑
F∈2Θ m(F ) · |F |. This impact for any pair of focal

elements Fi and Fj corresponds to an increase δm∪ (Fi, Fj) of
|m| given by3 (see [19])

δm∪ (Fi, Fj) ≜ [m(Fi) +m(Fj)]|Fi ∪ Fj |
−m(Fi)|Fi| −m(Fj)|Fj | (5)

where m(·) and |·| denote respectively the mass and cardinality
of the focal element.

Example 1: suppose Θ = {A,B,C} and the non-bayesian
BBA given by m(A) = 0.3, m(B) = 0.1, m(C) = 0.2,

2In [19], the weighted average of the cardinalities of focal elements of m(·)
is called the generalized cardinality of m(·).

3In δm∪ the m notation in superscript refers explicitly to the BBA m(·) (and
not to a numerical power exponent). This is because δm∪ (Fi, Fj) depends on
the values of masses of focal elements of the BBA m(·).

m(A ∪B) = 0.1 and m(Θ) = 0.3. Then one gets

|m| = m(A·)|A|+m(B) · |B|+m(C) · |C|
+m(A ∪B) · |A ∪B|+m(Θ) · |Θ|

= 0.3 · 1 + 0.1 · 1 + 0.2 · 1 + 0.1 · 2 + 0.3 · 3 = 1.7

If we modify this BBA by transferring the masses m(A) = 0.3
and m(B) = 0.1 to their union m(A ∪ B), we obtain the
modified BBA m′()̇ whose values are m′(C) = m(C) = 0.2,
m′(A∪B) = m(A∪B)+m(A)+m(B) = 0.5 and m′(Θ) =
m(Θ) = 0.3, and the WACFE of the modified BBA m′(·) is

|m′| = m′(C) · |C|+m′(A ∪B) · |A ∪B|+m′(Θ) · |Θ|
= 0.2 · 1 + 0.5 · 2 + 0.3 · 3 = 2.1

This corresponds to an increase |m′| − |m| = 2.1− 1.7 = 0.4
of the WACFE of m, which is given by (5). We can easily
verify

δm∪ (A,B) = [m(A) +m(B)]|A ∪B| −m(A)|A| −m(B)|B|
= [0.3 + 0.1] · 2− 0.3 · 1− 0.1 · 1 = 0.4

According to Denœux [19], the quantity δm∪ (Fi, Fj) defined
in (5) measures the impact of replacing Fi and Fj by their
union, and can therefore be interpreted somehow as a “dis-
tance” between these two focal elements Fi and Fj .

Based on Denœux idea, we can define an Impact Union-
based matrix (IU matrix for short) ∆(m) defined by

∆(m) ≜ [δm∪ (Fi, Fj), 0 < i, j ≤ |F(m)|] (6)

where δm∪ (Fi, Fj) is the impact on WACFE of the original
BBA m(·) when replacing Fi and Fj by their union, and
where i and j are the indexes of the elements in F(m). Note
that this IU matrix ∆(m) is a |F(m)| × |F(m)| matrix. Note
also that the IU matrix is symmetrical because δm∪ (Fi, Fj) =
δm∪ (Fj , Fi) for any index i and j. Also, the components of the
main diagonal of the IU matrix ∆(m) are all equal to zero
because δm∪ (Fi, Fi) = [m(Fi) +m(Fi)] · |Fi ∪ Fi| −m(Fi) ·
|Fi| −m(Fi) · |Fi| = 0 since |Fi ∪ Fi| = |Fi|.

Example 1 (continued): the rows and the columns of from
1 to |F(m)| = 5 correspond respectively to focal elements
A, B, C, A ∪ B, and A ∪ B ∪ C ≡ Θ in F(m), and in this
example the IU matrix is equal to

∆(m) =


0 0.4 0.5 0.3 0.6
0.4 0 0.3 0.1 0.2
0.5 0.3 0 0.5 0.4
0.3 0.1 0.5 0 0.1
0.6 0.2 0.4 0.1 0


The calculation of elements ∆ij(m) of the IU matrix

∆(m) is done according to (5). For instance, the component
∆14(m) = 0.3 because from (5) we have

∆14(m) = δm∪ (A,A ∪B)

= [m(A) +m(A ∪B)] · |A ∪ (A ∪B)|
−m(A) · |A| −m(A ∪B) · |A ∪B|

= [0.3 + 0.1] · 2− 0.3 · 1− 0.1 · 2 = 0.3

We recall that the first element (corresponding to index value
1) and the forth element (corresponding to index value 4)
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of F(m) are respectively A and A ∪ B, and that is why
∆14(m) = δm∪ (A,A ∪B).

For our BBA granulation purpose, we can always define an
adjacency matrix, denoted by AM(m) from the calculation
of IU matrix ∆(m) based on some thresholding strategy for
selecting the most impacting pairs of elements of the power
set on the change of WACFE of the original BBA when
transferring their mass to their union. The adjacency matrix
AM(m) = [AMij(m)] is a |F(m)| × |F(m)| matrix whose
the components are given by

AMij(m) =

{
1, if δm∪ (Fi, Fj) ≥ ρ,
0, if δm∪ (Fi, Fj) < ρ.

(7)

where ρ is a chosen threshold value.
The choice of the threshold value ρ is one of the most

critical steps in the traditional construction of graph struc-
ture. When the threshold ρ is small, there will exists many
connections between nodes (i.e. focal elements of m(·)) in
the graph structure, which will generate the dense graph and
thus increase the computational complexity of the subsequent
fusion steps. Conversely, when the threshold ρ is large, it
may connect some conflicting focal elements and transform
the dense graph into a sparse graph. Therefore, whether
the threshold ρ is too large or too small, it will affect the
relationship between focal elements. Based on the obtained IU
matrix ∆(m), the adjacency matrix can always be constructed
based on the selection of the threshold ρ, which is regarded
as the basis of graph analysis.

Example 1 (continued): suppose we take to ρ = 0.4 as the
threshold value for building the adjacency matrix AM(m).
From IU matrix obtained for this example, we get

AM(m) =


0 1 1 0 1
1 0 0 0 0
1 0 0 1 1
0 0 1 0 0
1 0 1 0 0


Generally speaking, an adjacency matrix is a mathematical

representation of a graph, which will directly reflect the
connection relationship between focal elements for making a
BBA granulation.

To circumvent the problem of threshold selection, we pro-
pose in this work a method of construction of the adjacency
matrix based on the maximum value of δm∪ (Fi, Fj) of IU
matrix (6). In our proposed method, a pair of focal elements
with the largest δm∪ (Fi, Fj) are found, and the corresponding
value is denoted as 1 in the adjacency matrix. Meanwhile,
the values of other components of the adjacency matrix are
set to 0. Based on this very simple strategy, we can identify
and mark the focal elements that play a decisive role in the
source of evidence, aiming to pave the way for subsequent
decision-making.

AMij(m) =

{
1, if δm∪ (Fi, Fj) = max∆(m),
0, otherwise.

(8)

Example 1 (continued): based on the simple adjacency
matrix construction (8), we will get in this non-bayesian BBA
example

AM(m) =


0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0


Example 2: we consider here an other example with

bayesian BBAs where the FoD is Θ = {θ1, θ2, θ3, θ4, θ5, θ6}.
Suppose we have two Bayesian BBAs given as in Table I.

TABLE I: Bayesian BBAs.
Focal elem. m1(·) m2(·)

θ1 0.70 0.10
θ2 0.10 0.10
θ3 0.01 0.04
θ4 0.05 0.15
θ5 0.05 0.60
θ6 0.09 0.01

Here, F(m1) = F(m2) = {θ1, θ2, θ3, θ4, θ5, θ6} and
|F(m)| = 6. For these bayesian BBAs m1(·) and m2(·), the
IU matrices are respectively equal to

∆(m1) =


0 0.80 0.71 0.75 0.75 0.79

0.80 0 0.11 0.15 0.15 0.19
0.71 0.11 0 0.06 0.06 0.1
0.75 0.15 0.06 0 0.10 0.14
0.75 0.15 0.06 0.10 0 0.14
0.79 0.19 0.10 0.14 0.14 0



∆(m2) =


0 0.2 0.14 0.25 0.70 0.11

0.20 0 0.14 0.25 0.70 0.11
0.14 0.14 0 0.19 0.64 0.05
0.25 0.25 0.19 0 0.75 0.16
0.7 0.7 0.64 0.75 0 0.61
0.11 0.11 0.05 0.16 0.61 0


In the IU matrix ∆(m1), we see that the union of θ1 and

θ2 has the greatest impact on the BBA m1(·), so these two
focal elements will be merged first in the following multi-
granular mapping. For the BBA m2(·), θ4 and θ5 will be
merged because the union of these two focal elements in
the IU matrix ∆(m2) has the greatest impact. Then, in the
adjacency matrices AM(m1) and AM(m2), the positions
of these selected focal elements are marked as 1, and the
others are set as 0. Besides, in order to compare with the
traditional construction method for adjacency matrix (7), we
set different threshold (ρ) values and observe the correspond-
ing adjacency matrices AMρ=0.4(m1) and AMρ=0.4(m2),
respectively. Clearly, these derived adjacency matrices have
obvious differences with the change of threshold (ρ). Through
the graphical visualization of all adjacency matrices in Fig.2, it
can be seen that by selecting the maximum value in IU instead
of the threshold (ρ) setting, those focal elements requiring
aggregation can be quickly detected for the subsequent multi-
granular mapping.

AM(m1)=


0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
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AM(m2)=


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 0



AMρ=0.4(m1)=


0 1 1 1 1 1
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0



AMρ=0.4(m2)=


0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 1 0
1 1 1 1 0 1
0 0 0 0 1 0



C. Multi-Granular Mapping of Focal Elements

Once the adjacency matrix between focal elements is ob-
tained, discovering the existing communities between focal
elements can be implemented. In this paper, two specific
communities are conducted: the decision-making community
and the supporting community. After that, focal elements
within the decision-making community can be selected to
achieve multi-granular mapping. Assuming that there exist
two pairs of focal elements {Xi1, Xj1} and {Xi2, Xj2} in
a piece of evidence belonging to two different communities,
the aggregated coarse-grained focal elements Y1, Y2 and the
belief masses can be constructed as follows:

Y1 = Xi1 ∪Xj1 = {Xi1, Xj1} ;
Y2 = Xi2 ∪Xj2 = {Xi2, Xj2} ; (9)

and 
m̂(Y1) = m(Y1) +m(Xi1) +m(Xj1),

m̂(Xi1) = 0,

m̂(Xj1) = 0.

(10)


m̂(Y2) = m(Y2) +m(Xi2) +m(Xj2),

m̂(Xi2) = 0,

m̂(Xj2) = 0.

(11)

Then, if m̂(Y1) > m̂(Y2), we regard the specific community
consisting of Xi1 and Xj1 as the decision-making community.
Meanwhile, Xi2 and Xj2 are in the supporting community.
Finally, the focal elements and their corresponding belief
masses in the final multi-granular source of evidence can be
determined as follows:

m̃(Xi1) = m(Xi1) +
1

2
∗ m̂(Y2). (12)

m̃(Xj1) = m(Xj1) +
1

2
∗ m̂(Y2). (13)

Regarding the detection of the communities within fo-
cal elements, we only consider two groups of communities
here: the connected communities between focal elements (the
decision-making community) and the absence of connected
communities between focal elements (the supporting commu-
nity). According to the generation rule (8) for the adjacency

matrix, communities can be easily discovered within the focal
elements and then the steps of multi-granular mapping are
conducted according to (9) and (10)-(13).

Example 2 (continued): since the adjacency matrices
AM(m1),AM(m2) corresponding to m1(·) and m2(·) are
obtained, the graph structures of focal elements can also be
derived. For m1(·), there is a connection between θ1 and
θ2 which play the most important role in making the final
decision; for m2(·), there exists a connection between θ4 and
θ5, and there is no connection between the other focal elements
for both m1(·) and m2(·). The generated two communities for
m1(·) and m2(·) are:

m1(·) : X1
1 = {θ1, θ2} ;X1

2 = {θ3, θ4, θ5, θ6} . (14)

m2(·) : X2
1 = {θ4, θ5} ;X2

2 = {θ1, θ2, θ3, θ6} . (15)

Then, the fine-grained focal elements in the decision-making
community and their corresponding belief masses generated by
these two communities can be calculated as follows:

m1(·) :
X1

1 = θ1 ∪ θ2 = {θ1, θ2} ;
X1

2 = θ3 ∪ θ4 ∪ θ5 ∪ θ6 = {θ3, θ4, θ5, θ6} .
(16)

m2(·) :
X2

1 = θ4 ∪ θ5 = {θ4, θ5} ;
X2

2 = θ1 ∪ θ2 ∪ θ3 ∪ θ6 = {θ1, θ2, θ3, θ6} .
(17)

m̂1(X
1
1 ) = m1(θ1) +m1(θ2) = 0.80;

m̂1(X
1
2 ) = m1(θ3) +m1(θ4) +m1(θ5) +m1(θ6) = 0.20.

(18)
m̂2(X

2
1 ) = m2(θ4) +m2(θ5) = 0.75;

m̂2(X
2
2 ) = m2(θ1) +m2(θ2) +m2(θ3) +m2(θ6) = 0.25.

(19)
m̃1(θ1) = m1(θ1) +

1
2 ∗ m̂1(X

1
2 ) = 0.8;

m̃1(θ2) = m1(θ2) +
1
2 ∗ m̂1(X

1
2 ) = 0.2.

(20)

m̃2(θ4) = m2(θ4) +
1
2 ∗ m̂2(X

2
2 ) = 0.275;

m̃2(θ5) = m2(θ5) +
1
2 ∗ m̂2(X

2
2 ) = 0.725.

(21)

It can be seen in Fig.3 that the mapped multi-granular
sources of evidence m̃1(·) and m̃2(·) contain only two sets
of fine-grained focal elements, thus providing guarantee for
subsequent efficient fusion.

D. Multi-Granular Fusion and Decision Making

After obtaining multi-granular sources of evidence, the
PCR6 combination rule [25] can be applied to fuse the these
mapped BBAs:

m̃PCR6 = PCR6 (m̃1, m̃2, · · · , m̃N ) . (22)

So far, in the BF community, some advanced classical
techniques have been developed and widely applied in the
literature to make the final decision. For example, decision
based on maximum of credibility: Bel(·) or decision based on
maximum of plausibility: Pl(·). Recently, a novel decision-
making strategy with belief interval distance dBI(·) was
proposed in [30]. Considering the superiority of the decision
technique with dBI(·) [30, 31], we apply dBI(·) to make the
final decision after the fusion step. The calculation of the
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Fig. 2: Visualization of the Adjacency Matrix for m1(·) and m2(·).

TABLE II: Comparisons Between MGBF and Traditional PCR6-based Fusion.
θ1 θ2 θ3 θ4 θ5 θ6 Final Decision

dBI(m̃PCR6,mθ) 0.2725 0.4605 0.4798 0.4482 0.3169 0.4798 θ1
dBI(mPCR6,mθ) 0.2562 0.4608 0.4779 0.4596 0.3311 0.4715 θ1

Fig. 3: The Process of Multi-Granular Mapping for BBA
Granulation.

interval distance between the BBA m(·) and the particular
(categorial) BBA defined by mX(X) = 1 of each focal
element X ∈ 2Θ based on dBI(·):

dBI(m,mX) =

√
Nc ·

∑
A∈2Θ

d2BI(BI(A), BIX(A)). (23)

Where Nc is the normalization factor: Nc =

Fig. 4: The General Principle of the Proposed MGBF
Approach.

1/2(|2
Θ|−1) to have dBI(m,mX) ∈ [0, 1]. Besides,

BI(A) : [Bel(A), P l(A)], BIX(A) : [BelX(A), P lX(A)],
dBI([a, b], [c, d]) =

√
[a+b

2 − c+d
2 ]2 + 1

3 [
b−a
2 − d−c

2 ]2.
Besides, mX is the particular (categorial) BBA defined by
mX(X) = 1 and mX(A) = 0 for any A ̸= X .

Finally, we can make the decision X̃ based on minimum of
belief interval distance: dBI(·):

X̃ = arg min
X∈Θ

dBI(m,mX). (24)
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Fig. 5: Overview of the Proposed CNN+Attention Network with Multi-Granular Belief Fusion.

In order to make more clear comparisons, the general
principle of the MGBF approach for fusion and decision
making, and performance comparison with respect to the
classical PCR6-based fusion approach are presented in Fig.4.
Besides, we also use (dBI (23)) to measure the closeness
distance between the indirect PCR6-based fusion results after
BBA granulation or approximation and the direct PCR6-based
fusion results for original BBAs.

Example 2 (continued): Based on (22), the multi-granular
BBA m̃1(·) and m̃2(·) can be easily fused and the combined
BBA is given as follows:

m̃PCR6(θ1) = 0.4680;
m̃PCR6(θ2) = 0.0545;
m̃PCR6(θ4) = 0.0881;
m̃PCR6(θ5) = 0.3894.

(25)

Finally, we can also use (23) and (24) to obtain
dBI(m̃PCR6,mθ), which is given as follows:

dBI(m̃PCR6,mθ1) = 0.2725;

dBI(m̃PCR6,mθ2) = 0.4605;

dBI(m̃PCR6,mθ3) = 0.4798;

dBI(m̃PCR6,mθ4) = 0.4482;

dBI(m̃PCR6,mθ5) = 0.3169;

dBI(m̃PCR6,mθ6) = 0.4798.

Since (dBI(m̃PCR6,mθ3) ≃ dBI(m̃PCR6,mθ6)) ≻
dBI(m̃PCR6,mθ2)) ≻ (dBI(m̃PCR6,mθ4) ≻
dBI(m̃PCR6,mθ5)) ≻ (dBI(m̃PCR6,mθ1), θ1 will be
the final decision. In addition, to compare the direct PCR6-
based fusion with our proposed multi-granular fusion in
terms of fusion accuracy and efficiency, we list the fusion
results dBI(m̃PCR6,mθ) and dBI(mPCR6,mθ) in Table II.
It can be seen from this table that the final decision result of
our multi-granular fusion is consistent with the result of the

classical PCR6-based fusion method, that is, the final decision
is θ1. In addition, we also give the computation time of the
two fusion strategies. It can be found that the running time of
the multi-granular fusion method (0.0026s) is nearly 3 times
faster than that of the traditional PCR6-based fusion method
(0.0071s). The corresponding dBI distance between the direct
PCR6 fusion result and MGBF-based fusion result is 0.0223,
which indicates a very good proximity of the two results. This
has been calculated by dBI(m̃PCR6(·),mPCR6(m1,m2))
(23). The interest and the effectiveness of this new MGBF
approach with respect of the classical PCR6-based fusion
approach is shown in the next section for the human activity
recognition application.

IV. HUMAN ACTIVITY RECOGNITION BASED ON
MULTI-GRANULAR BELIEF FUSION

Human Activity Recognition (HAR) is mainly used to
maintain or improve human health by detecting and classifying
human daily activities. At present, this technology has been
widely used in the fields of elderly monitoring [32], sports
monitoring [33], medical care [34] and so on. Generally
speaking, HAR can be divided into vision-based HAR and
wearable sensor-based HAR. Considering that the accuracy of
vision-based HAR is easily affected by environmental noise
such as illumination or overlap between subjects, wearable
sensor-based HAR has attracted more and more attention
from researchers [5, 35]. Therefore, in this work, we mainly
focus our discussions on wearable sensor based HAR, and
comprehensively discuss the effectiveness of the proposed
multi-granular belief fusion method from two aspects: the
accuracy of activity recognition and the fusion efficiency.

A. Overview of the MGBF based Activity Recognition Model

In this work, with the help of the end-to-end learning
ability of the CNN+Attention model proposed by Gao et al.
[36], we present the multi-granular belief fusion (MGBF)
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model to complete high-precision activity recognition. The
framework of the MGBF-based activity recognition model
with the basic CNN+Attention model is shown in Fig.5, which
mainly includes the following three steps:

• Step 1: divide the original dataset into several separate
parts based on the type of sensors in body sensor net-
works. In the following discussions, the original dataset
is only divided into two simple parts: accelerometer-
based sensor perception data and gyroscope-based sensor
perception data;

• Step 2: with the help of the end-to-end CNN+Attention
basic model, BBA acquisition of activity categories is
realized. It is worth noting that the number of the derived
BBAs is determined by the number of CNN+Attention
basic models, which are trained by the divided datasets;

• Step 3: the outputs of the CNN+Attention models are
combined by the proposed multi-granular belief fusion
method, and finally, the unknown class of the activity
can be predicted.

B. End-to-End CNN+Attention Network for the Output of BBA

Compared with our earlier works based on manual features
engineering [4], the deep end-to-end architecture has the
capacity of automatic feature extraction, thus ensuring the
effectiveness of feature engineering and the high-precision
of action recognition. At present, more and more activity
recognition models rely on the deep learning framework [37].
In this paper, we follow this deep learning-based line, and
the base model in the proposed multi-granular belief fusion
model is the CNN+Attention network, which was initially
proposed in [36]. The structure of the CNN+Attention network
is shown in Fig.5, which mainly includes a convolutional layer,
a channel attention sub-module, and a temporal attention sub-
module. The training process of the CNN+Attention model
is mainly divided into three steps: firstly, with the help of a
fixed-length sliding window, the time series data is divided
into a set of short signals along the time axis. Then, the
acquired signals are fed into a convolutional layer to extract
the deep features; Secondly, in the channel attention module,
the derived features are aggregated using the max pooling and
average pooling methods. Then, the sigmoid function is used
to generate probabilities; Thirdly, in the temporal attention,
the channel information across channel axes is aggregated
by applying max pooling and average pooling techniques
to generate subsequent temporal attention maps; Finally, the
feature vector is fed into the fully connected (FC) layer and
then the outputs of the softmax layer will be regarded as the
corresponding BBAs.

1) Channel Attention Module: Suppose a convolution layer
and its generated feature map: F ∈ RCl×H×W , where Cl,
W and H represent the dimensions of channel (i.e. number
of filters), width (temporal axis) and height (sensor axis),
respectively. In order to effectively calculate channel attention,
for a given input feature, the weight of channel attention can
be calculated as:

WCl = σ (w2ReLU (w1g1 (F )) + w2ReLU (w1g2 (F ))) .
(26)

where g1 = 1
WH

∑W,H
i=1,j=1 Fij , g2 = maxW,H

i=1,j=1 Fij repre-
sent the global average pooling and max pooling of the chan-
nel, respectively; σ (·) is the sigmoid function; ReLU (·) is the
rectified linear unit [38]; w1 = Cl×(Cl/r) ;w2 = (Cl/r)×Cl
and r is the reduction rate of the convolutional layer.

2) Temporal Attention Module: Similar to the computation
of the channel attention submodule, the computation of tem-
poral attention can concatenate the channel information of
features through max-pooling and average-pooling operations.
Here, we concatenate the information by connecting two
pooled features, and normalize the convolution of the channel
information. The specific calculation method is as follows:

WT = σ
(
fscf×1 ([g1 (F ) ; g2 (F )])

)
. (27)

where σ (·) is the sigmoid function; scf × 1 represents the
size of the convolution filter; g1, g2 is the average pooling and
max pooling; here, the size of filter is set to: scf ×1 = 7×1.

More details about the CNN+Attention network can be
found in [36]. Here, we mainly use this classical network as
the base model for our proposed multi-granular belief fusion
framework to verify the effectiveness of this new approach.

C. Experiments

1) Data Set Description: In the HAR field, the two public
datasets: UCI Smartphone dataset4 and OPPORTUNITY5 are
widely used. The UCI Smartphone dataset mainly includes
six activities (sitting, standing, laying, walking, walking up-
stairs and downstairs), which were repeated by thirty subjects
throughout the data collection process. More details about
Smartphone can be found in [39]. For the OPPORTUNITY
dataset [40], it records the real-world daily living activities of
12 subjects in a sensor-rich environment. The sensory data
were collected from IMUs attached to 12 body locations,
namely upper limbs, back and feet. The resulting dataset has
79 dimensions and in this paper, we aim to use our proposed
model to classify the involved 18 daily activities in this dataset.

2) Experimental Setup: As discussed earlier, the multi-
granular belief fusion recognition model proposed here cannot
be directly applied to raw time series of daily activities. There-
fore, a sliding window technique is first applied to the raw time
series data. The sliding window length here is set to 8 and the
sliding step is set to 2. The dataset was randomly split into a
70% training set and a 30% testing set. The Adam optimization
is used to train the network with a batch size of 150. The initial
learning rate is set to 0.001 and will decrease by a factor of
0.1 after every 30 epochs; For the OPPORTUNITY dataset,
since it has a significantly unbalanced class distribution and
an additional strong bias towards NULL classes, the NULL
classes are considered when evaluating the performance of our
proposed MGBF-based recognition model. Here, we replicate
the same training and testing steps from [36]. The runs 2,
4, and 5 from subject 1, 2, and 3 are used as the test set,
the other data are used as training set. Moreover, the sliding

4Online. [Available]: http://archive.ics.uci.edu/ml/datasets/Smartphone-
Based+Recognition+of+Human+Activities+and+Postural+Transitions.

5[Online]. Available: http://archive.ics.uci.edu/ml/datasets/ OPPORTU-
NITY+Activity+Recognition.
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TABLE III: Brief Description for CNN+Attention Network.
Layer Layer 1 Layer 2 Layer 3

Conv,128 Conv,256 Conv,384
CNN+Attention Conv,128 Conv,256 Conv,384 FC Softmax

AttModule AttModule AttModule

window length is set to 84 and the sliding step is set to 8.
And in the training process, the batch size is set to 150. We
set the initial learning rate to 0.001, which will decrease by a
factor of 0.1 after every 30 epochs. The specific structure of
CNN+Attention Network is shown in Table III.

3) Measure of Performances: In this paper, we use
Accuracy to measure the performance of the proposed
MGBF-based model, which is defined by [41]

Accuracy =
1

n

n∑
h=1

TPh + TNh

TPh + TNh + FPh + FNh
. (28)

where h denotes class index and n is the number of classes.
TPh, TNh, FPh and FNh are respectively True Positives: TP,
True Negatives: TN, False Positives: FP and False Negatives:
FN.

4) Results on the UCI Smartphone Dataset: In Fig.6, the
train and test error curves of the MGBF-based model on
Smartphone are first presented. It can be clearly seen that
with the increase in the number of iterations, the training
error and test error of our proposed model gradually tend
to the minimum value. We also give the confusion matrix
of activity recognition in Fig.7. It can be observed that even
for similar activities such as walking upstairs and downstairs,
the proposed MGBF-based model can also effectively iden-
tify these activities. The performance of this high-precision
activity recognition mainly depends on two aspects: 1. deep
feature extraction based on the CNN+Attention network; 2.
multi-granular belief fusion. Furthermore, we compare the
recognition results of the MGBF-based model with other
classical methods. A comprehensive list of recognition models
for the UCI Smartphone dataset published in the literature
is shown in Table IV, including Hyperbox Neural Networks
[42], FW K-Nearest Neighbor [43], FW Naive Bayes [43],
Neural Networks with Incremental Supervised Learning [44],
Stacked Denoising Autoencoders [45], DSmT-KDE [46], etc.
The results show that our method achieves an average 3%
improvement in accuracy compared to traditional activity
recognition models based on classical approaches. Moreover,
we are also able to observe that the performance of the MGBF-
based recognition model is the best among all the mentioned
algorithmic models.

To further discuss and verify the effectiveness of our fusion
algorithm, we comprehensively compare the performance of
the multi-granular belief fusion based on graph structure and
the classical PCR6 rules from three aspects: recognition ac-
curacy, degradation (i.e. closeness distance), and computation
time of fusion. As can be seen from Fig.8, compared with
the PCR6 fusion rule, the degradation of the multi-granular
fusion algorithm remains within an acceptable range (0.0278±
0.0178). The most interesting and attractive phenomenon is
that such degradation does not cause the loss of activity

recognition accuracy (96.05%) with respect to the classical
PCR6 fusion (96.05%), but its fusion efficiency in terms
of computation time saving is increased by more than five
times from the perspective of computation time (multi-granular
fusion: 0.1296±0.0503 ms; traditional PCR6: 0.6301±0.2529
ms). This result further shows that such information loss has
no impact on the decision results and also proves that our
proposed multi-granular belief fusion algorithm is feasible and
effective.

TABLE IV: Comparison of the Proposed Method with the
State-of-The-Art Approaches on the UCI Smartphone dataset.

Method Accuracy
Hyperbox Neural Network [42] 87.4%
FW K-Nearest Neighbor [43] 87.8%
FW Naive Bayes [43] 90.1%
Neural Network with Incremental Super-
vised Learning [44]

92.83%

Stacked Denoising Autoencoders [45] 91.95%
DSmT-Based Kernel Density Estimation
[46]

93.05%

Our Proposed Method (PCR6) 96.05%
Our Proposed Method (Multi-Granular
Belief Fusion)

96.05%

Fig. 6: Train and test error on UCI Smartphone dataset.

Fig. 7: Confusion Matrix for UCI Smartphone Dataset.
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Fig. 8: Comparisons Between Multi-granular Belief Fusion
and PCR6 from Two Aspects: Computation Time and
Closeness Distance (Smartphone).

5) Results on the UCI OPPORTUNITY Dataset: Similar
to the experimental results obtained with Smartphone dataset,
we also give the confusion matrix of activity recognition
in Fig.9. Compared with UCI Smartphone dataset, there is
a total of 18 categories of activities that need to be rec-
ognized, which is much more difficult than the recognition
of smartphone activities. As we can see from Fig.10(a), the
opportunity dataset is an imbalanced dataset, in which A1
(NULL) accounts for 83% and the other 17 categories account
for about 17%. The recognition accuracy of each activity
is drawn in Fig.10(b), and we can see that the recognition
accuracy of A1 (NULL) is the highest, reaching 98.1871%,
while the recognition accuracy of A11 (Close Drawer1) is
the worst: 12.5%. Furthermore, we compare the recognition
results of the MGBF-based model with other classical meth-
ods. A comprehensive list of recognition models for the UCI
Opportunity dataset published in the literature is shown in
Table V, including the literature Standard Recurrent Network
[47], CNN [48], CNN+LSTM [49], Layer-wise Deep Neural
Networks [50], Att-based Residual Network [36], DSmT-KDE
[46]etc. The results show that the performance of the multi-
granular fusion recognition model is the best among all the
mentioned algorithmic models.

To further discuss and verify the effectiveness of our fusion
algorithm, we comprehensively compare the performance of
the multi-granular belief fusion based on graph structure
and the classical PCR6 rule from three aspects: recognition
accuracy, closeness distance, and computation time of fusion.
As can be seen from Fig.11, compared with the PCR6 fusion
rule, the degradation of the results produced by the MGBF
with respect to classical direct PCR6-based fusion also remains
within an acceptable range (0.0119 ± 0.0125). The loss of
activity recognition accuracy caused by this closeness distance
is about 0.03%, but its computation time is more than 50
times from the perspective of computation time (multi-granular
fusion: 0.1564±0.0565 ms; traditional PCR6: 7.9204±3.3116
ms). This result further proves that our proposed MGBF is
feasible and effective.

6) Comparisons Between PCR6-Based MGBF and BBA
Approximations: Here, we discuss the similarities and dif-

Fig. 9: Confusion Matrix for UCI Opportunity Dataset.
(A1: NULL; A2: Open Door1; A3: Open Door2; A4: Close
Door1; A5: Close Door2; A6: Open Fridge; A7: Close
Fridge; A8: Open Dishwater; A9: Close Dishwater; A10:
Open Drawer1; A11: Close Drawer1; A12: Open Drawer2;
A13: Close Drawer2; A14: Open Drawer3; A15: Close
Drawer3; A16: Clearn Table; A17: Drink from Cup; A18:
Toggle Switch.)

TABLE V: Comparison of the Proposed Methd with the State-
of-The-Art Approaches on the UCI Opportunity dataset.

Method Accuracy
Standard Recurrent Network [47] 74.5%
Standard CNN [48] 76.83%
CNN+LSTM [49] 78.90%
Layer-wise Deep Neural Networks [50] 81%
Att-based Residual Network [36] 82.75%
Our Proposed Method (PCR6) 90.85%
Our Proposed Method (Multi-Granular
Belief Fusion)

90.82%

ferences between the PCR6-based MGBF and three classical
BBA approximations ( k-l-x method [15], Summarization [16]
and Non-redundancy method [51]). The relationship between
PCR6-based MGBF and BBA approximation can be clearly
observed from three aspects: closeness distance, computation
time and accuracy of activity recognition. Among them, the
computation time refers to the time required for PCR6-based
fusion after granulation or approximation. As we can observe
from Fig.12 with the UCI Smarphone or Opportunity dataset,
the proposed MGBF and classical BBA approximation meth-
ods exhibit some similar and some different characteristics,
which can be summarized as the following points:

• Similarities:
– Both the proposed MGBF and classical BBA approx-
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Fig. 10: Proportion and the Corresponding Accuracy of Each Category in the Test Set (Opportunity).

TABLE VI: Comparison of Classical Fusion Approaches with Our Proposed MGBF Strategy on the UCI Smartphone dataset.
Original Direct Fusion The Proposed MGBF-Based Fusion

- Accuracy (%) Computation Time (ms) Accuracy (%) Computation Time (ms) Information Loss
Yager’s Rule 94.15 0.3838± 0.1318 93.61 (↓ 0.54%) 0.0877± 0.0266 (↑ 77.15%) 0.1130± 0.0559
Murphy’s Rule 88.49 0.3903± 0.1502 88.35 (↓ 0.14%) 0.0920± 0.0375 (↑ 76.43%) 0.1160± 0.0543
Dempster’s Rule 95.92 0.6487± 0.2327 95.71 (↓ 0.21%) 0.1099± 0.0424 (↑ 83.06%) 0.0281± 0.0449
PCR6 96.05 0.6301± 0.2529 96.05 (↓ 0%) 0.1296± 0.0503 (↑ 79.43%) 0.0278± 0.0178

TABLE VII: Comparison of Classical Fusion Approaches with Our Proposed MGBF Strategy on the UCI Opportunity dataset.
Original Direct Fusion The Proposed MGBF-Based Fusion

- Accuracy (%) Computation Time (ms) Accuracy (%) Computation Time (ms) Information Loss
Yager’s Rule 88.58 5.4716± 2.7553 88.49 (↓ 0.09%) 0.1102± 0.0376 (↑ 97.99%) 0.0646± 0.0433
Murphy’s Rule 90.82 5.5304± 3.8232 88.49 (↓ 2.33%) 0.1118± 0.0402 (↑ 97.98%) 0.0613± 0.0397
Dempster’s Rule 90.74 6.5871± 3.5769 88.99 (↓ 1.85%) 0.1344± 0.0472 (↑ 97.96%) 0.0159± 0.0441
PCR6 90.85 7.9204± 3.3116 90.82 (↓ 0.03%) 0.1564± 0.0565 (↑ 98.03%) 0.0119± 0.0125

Fig. 11: Comparisons Between Multi-Granular Belief Fu-
sion and PCR6 from Two Aspects: Computation Time and
Closeness Distance (Opportunity).

imations bring a certain degree of closeness distance,
which can be seen in Fig.12.(1) and Fig.12.(4). Among
them, the degradation of BBA approximation increases
with the decrease of the number of remaining focal
elements;

– Both the proposed MGBF and classical BBA ap-
proximations can reduce the computational complexity
of fusion, that is, the computation time required for
fusion rules is significantly reduced, which can be

observed in Fig.12.(2) and Fig.12.(5). Among them, the
computation time of the BBA approximation methods
decreases gradually with the reduction of the number
of remaining focal elements;

– Both the proposed MGBF and BBA approximation
will lead to the reduction of classification accuracy;
Among them, with the decrease of the remaining focal
elements, the classification accuracy of BBA approxi-
mations will also gradually decrease.

• Differences:
– From an approximation point of view, it is wise and

prudent to change the original BBA gradually and
slightly, which aims to guarantee sufficient overall
similarity compared to the original BBA. However, the
MGBF method proposed here emphasizes the preser-
vation of the decision information in the original BBA,
and at the same time, the unimportant focal elements
are aggregated at one time, thus avoiding the step-
by-step discussion of the deletion of focal elements.
As we can see in Fig.12.(3) and Fig.12.(6), MGBF
can effectively ensure the recognition accuracy while
improving the fusion efficiency;

– In practical applications, especially for problems with
large FoD, the step-by-step sequential deletion of focal
elements in classical BBA approximation is too cau-
tious. As can be seen in Fig.12.(6), when the number of
the remaining focal elements is reduced from 18 to 6,
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Fig. 12: PCR6-based MGBF and classical BBA Approximation Methods for UCI Smartphone and Opportunity Datasets.

the classification accuracy of activities does not change
significantly. However, the corresponding closeness
distance in Fig.12.(6) has been increasing. That is to
say, the lost information comes from those unimportant
focal elements that have no decisive influence on the
final decision. The motivation of BBA granulation is
to avoid the step-by-step discussion about the deletion
of unimportant (non-decision-making) focal elements,
and to retain those focal elements with decision at-
tributes as much as possible, which is very meaningful
for practical problems under the large FoD.

7) Comparisons Between Different Fusion Rules in MGBF:
As we have already described in Section III.D and Fig.4,
the proposed MGBF strategy in this paper is to reduce the
computational complexity of classical fusion rules in the
belief functions community with the help of the novel multi-
granular mapping approach. To further prove the effectiveness
of the MGBF, more comprehensive comparisons have been
given here to observe whether the multi-granular mapping is
effective by changing the basic classical fusion rules in MGBF.
Four classical fusion rules are considered: Yager’s Rule [52],
Murply’s Rule [53], Dempster’s Rule (3) and the PCR6 (4).
The comparison results are given in Table VI and Table VII.
As we can see in these two tables, in general, with the
help of the multi-granular mapping strategy, the computational
efficiency of all classical fusion rules has been significantly
improved. The cost of such efficiency improvement is the
decline of activity recognition accuracy caused by information
loss within the acceptable range. The original intention of

the multi-granular fusion method is to avoid the impact of
activity recognition accuracy as much as possible and improve
the fusion efficiency. Therefore, the smaller value after the
downward arrow in the accuracy column of Table VI and
Table VII is, the better (less influence on accuracy). Similarly,
the larger value after the upward arrow in the computation
time column is, the better (greater fusion efficiency improve-
ment). Specifically, PCR6 rule-based MGBF has the highest
accuracy in both UCI smartphone (96.05%) and opportunity
(90.82%) datasets compared to other mentioned rules based
multi-granular fusion methods. Compared with the original
PCR6 rule, the fusion efficiency on the two data sets has
increased by 79.43% and 98.03%, respectively. In addition,
as discussed before, multi-granular mapping will bring about
information loss to a certain extent. It can be found that both
fusion rules on Smartphone and Opportunity datasets have a
certain degree of decline after using multi-granular mapping.
Among all mentioned classical fusion rules, the PCR6-based
MBGF brings the lowest information loss in both two datasets.
Although four different fusion rules have been adopted and
discussed in our MGBF for activity recognition problems, the
proposed multi-granular mapping strategy can still reduce the
computational complexity, which proves the effectiveness and
generality of our proposed method in this paper.

8) Further Discussions: In Fig.8 and Fig.11, there exist
several abnormal points in the closeness distance curve, where
the values of distance are relatively large and far exceed the
average value. In order to explain this problem, more deep
investigations are given in this part. Specifically, two repre-
sentative BBAs in Fig.8 are selected: m1(·) with the largest
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closeness distance (0.1486) is m1(θ1) = 0.0581;m1(θ2) =
0.0777;m1(θ3) = 0.0635;m1(θ4) = 0.1993;m1(θ5) =
0.2919;m1(θ6) = 0.3095 and m2(·) with the relative smaller
distance value (0.0096) is m2(θ1) = 0.0117;m2(θ2) =
0.0099;m2(θ3) = 0.0116;m2(θ4) = 0.0124;m2(θ5) =
0.0065;m2(θ6) = 0.9479. Compared to m1(·), m2(·) is more
specific with less uncertainty, which means that most belief
masses are assigned to single focal element: θ6. Thus, we
give the assumption that the higher the degree of uncertainty in
BBAs, the greater the closeness distance brought by the multi-
granular mapping strategy. In order to verify this assumption,
we adopt a classical uncertainty measure for BBAs: Proba-
bilistic Information Content (PIC) [54]. If m(·) is a Bayesian
BBA, for Θ = {θ1, θ2, · · · , θN}, its PIC value is defined as6:

PIC(m) ≜ 1 +
1

log2N

N∑
i=1

m(θi)log2m(θi). (29)

The value of PIC metric belongs to the interval [0,1]. When
the BBA is m(θi) = 1

N for i = 1, 2, · · · , N in FoD Θ, the
value of PIC is minimum, i.e. PIC(m) = PICmin = 0.
This case means that decision maker cannot make the final
decision because all the belief masses of focal elements are
the same and the degree of uncertainty is the largest. On the
contrary, when the BBA is deterministic, that is, if there exists
an element θi in Θ such as m(θi) = 1, the PIC metric is
maximum, i.e. PIC(m) = PICmax = 1. We thus draw
the relationship between PIC value and the closeness distance
for UCI Smartphone and Opportunity datasets in Fig.13 and
Fig.14. As we can see in these two figures, when the PIC
value of the BBA is small, the closeness distance between
traditional PCR6 and MGBF is larger than other BBAs with
higher PIC value. Therefore, we can conclude that MGBF
strategy proposed here is a multi-granular mapping method,
which can reduce the uncertainty of the original BBA, thus
making the final decision more specific.

Fig. 13: The Relationship Between PIC value and The
Closeness Distance (Smartphone).

V. CONCLUSION AND FUTURE WORKS

In this paper, we have proposed a novel efficient graph-
based multi-granular belief fusion approach for human activity

6where 0log2(0) = 0 by definition.

Fig. 14: The Relationship Between PIC value and The
Closeness Distance (Opportunity).

recognition. Compared to existing works, the CNN+Attention
network is regarded as the base classifier for providing the cor-
responding BBAs. Then, these BBAs are fused with the multi-
granular belief fusion and the final decisions can be made
precisely. Based on extensive experiments on two publicly
available activity classification datasets, our results show that
the proposed multi-granular fusion method is more efficient
than the traditional PCR6 rule. Also, the fused recognition
model is superior to other advanced models for activity
recognition. In future work, we will focus on researching more
robust multi-criteria methods for evaluating the relationship
between focal elements in BBA granulation. We will also try
more intelligent local community detection algorithms in the
complex network to find influential nodes in the evidence and
the appropriate dimension of granularity in BBA granulation
and test improved rules of combination.
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